Overlap-free words and free Burnside semigroup with two generators satisfying $x^2=x^3$.
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 166-181.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the free Burnside semigroup with two generators satisfying $x^2=x^3$. Elements of this semigroup are classes of equivalent words. We prove that each such equivalence class contains at most one overlap-free word.
Mots-clés : group
Keywords: Burnside semigroup, overlap-free word.
@article{SEMR_2009_6_a7,
     author = {A. N. Plyushchenko},
     title = {Overlap-free words and free {Burnside} semigroup with two generators satisfying $x^2=x^3$.},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {166--181},
     publisher = {mathdoc},
     volume = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a7/}
}
TY  - JOUR
AU  - A. N. Plyushchenko
TI  - Overlap-free words and free Burnside semigroup with two generators satisfying $x^2=x^3$.
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2009
SP  - 166
EP  - 181
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a7/
LA  - ru
ID  - SEMR_2009_6_a7
ER  - 
%0 Journal Article
%A A. N. Plyushchenko
%T Overlap-free words and free Burnside semigroup with two generators satisfying $x^2=x^3$.
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2009
%P 166-181
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a7/
%G ru
%F SEMR_2009_6_a7
A. N. Plyushchenko. Overlap-free words and free Burnside semigroup with two generators satisfying $x^2=x^3$.. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 166-181. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a7/

[1] Bakirov M. F., Sukhanov E. V.,, “Slova Tue-Morsa i $\mathcal D$-stroenie svobodnoi bernsaidovoi polugruppy”, Izvestiya Uralskogo gos. universiteta, seriya “Matematika i mekhanika”, 18:3 (2000), 5–19 | MR | Zbl

[2] Lalleman Zh., Polugruppy i kombinatornye prilozheniya, Mir, M., 1985 | MR

[3] Green J. A., Rees D., “On semigroups in which $x^r=x$”, Proc. Cambridge Philos. Soc., 48 (1952), 35–40 | DOI | MR | Zbl

[4] Guba V. S., “The word problem for the relatively free semigroups satisfying $t^m=t^{m+n}$ with $m\geq3$”, International Journal of Algebra and Computation, 2:3 (1993), 335–348 | DOI | MR

[5] Guba V. S., “The word problem for the relatively free semigroups satisfying $t^m=t^{m+n}$ with $m\geqslant4$ or $m\geq3$, $n=1$”, International Journal of Algebra and Computation, 2:2, 125–140 | MR | Zbl

[6] Kaďourek L., Polák J., “On free semigroups satisfying $x^r\simeq x$”, Simon Stevin, 64:1 (1990), 3–19 | MR

[7] Do Lago A. P., “Maximal groups in free Burnside semigroups”, LATIN'98, Lecture Notes in Computer Science, 1380, eds. C. L. Lucchesi and A. V. Moura, Springer-Verlag, Berlin, 1998, 70–81 | MR

[8] Do Lago A. P., “On the Burnside semigroups $x^n=x^{n+m}$”, International Journal of Algebra and Computation, 6:2 (1996), 179–227 | DOI | MR | Zbl

[9] de Luca A., Varricchio S., “On non-counting regular classes”, Theoretical Computer Science, 100 (1992), 67–104 | DOI | MR | Zbl

[10] McCammond J., “The solution to the word problem for the relatively free semigroups satisfying $t^a=t^{a+b}$ with $a\geq6$”, International Journal of Algebra and Computation, 1 (1991), 1–32 | DOI | MR | Zbl

[11] Shur A. M., “Overlap-free words and Thue-Morse sequences”, International Journal of Algebra and Computation, 6:3 (1996), 353–367 | DOI | MR | Zbl