Overlap-free words and free Burnside semigroup with two generators satisfying $x^2=x^3$.
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 166-181

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the free Burnside semigroup with two generators satisfying $x^2=x^3$. Elements of this semigroup are classes of equivalent words. We prove that each such equivalence class contains at most one overlap-free word.
Mots-clés : group
Keywords: Burnside semigroup, overlap-free word.
@article{SEMR_2009_6_a7,
     author = {A. N. Plyushchenko},
     title = {Overlap-free words and free {Burnside} semigroup with two generators satisfying $x^2=x^3$.},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {166--181},
     publisher = {mathdoc},
     volume = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a7/}
}
TY  - JOUR
AU  - A. N. Plyushchenko
TI  - Overlap-free words and free Burnside semigroup with two generators satisfying $x^2=x^3$.
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2009
SP  - 166
EP  - 181
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a7/
LA  - ru
ID  - SEMR_2009_6_a7
ER  - 
%0 Journal Article
%A A. N. Plyushchenko
%T Overlap-free words and free Burnside semigroup with two generators satisfying $x^2=x^3$.
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2009
%P 166-181
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a7/
%G ru
%F SEMR_2009_6_a7
A. N. Plyushchenko. Overlap-free words and free Burnside semigroup with two generators satisfying $x^2=x^3$.. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 166-181. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a7/