Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2009_6_a6, author = {A. E. Mamontov}, title = {Global solvability of the multidimensional equations of compressible {non-Newtonian} fluids, transport equation and the {Orlicz} spaces}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {120--165}, publisher = {mathdoc}, volume = {6}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a6/} }
TY - JOUR AU - A. E. Mamontov TI - Global solvability of the multidimensional equations of compressible non-Newtonian fluids, transport equation and the Orlicz spaces JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2009 SP - 120 EP - 165 VL - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a6/ LA - ru ID - SEMR_2009_6_a6 ER -
%0 Journal Article %A A. E. Mamontov %T Global solvability of the multidimensional equations of compressible non-Newtonian fluids, transport equation and the Orlicz spaces %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2009 %P 120-165 %V 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a6/ %G ru %F SEMR_2009_6_a6
A. E. Mamontov. Global solvability of the multidimensional equations of compressible non-Newtonian fluids, transport equation and the Orlicz spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 120-165. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a6/
[1] S. N. Antontsev, A. V. Kazhikhov, V. N. Monakhov, Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Sib. otd., Novosibirsk, 1983, 320 pp. | MR | Zbl
[2] Dzh. Astarita, Dzh. Marruchchi, Osnovy gidromekhaniki nenyutonovskikh zhidkostei, Mir, M., 1978, 312 pp.
[3] S. V. Astashkin, “Novye ekstrapolyatsionnye sootnosheniya v shkale $L_p$-prostranstv”, Funk. analiz i ego pril., 37:3 (2003), 73–77 | MR | Zbl
[4] S. V. Astashkin, “Ob ekstrapolyatsionnykh svoistvakh shkaly $L_p$-prostranstv”, Matem. sbornik, 194:6 (2003), 23–42 | MR | Zbl
[5] S. V. Astashkin, “Ekstrapolyatsionnye funktory na semeistve shkal, porozhdennykh veschestvennym metodom interpolyatsii”, Sib. mat. zhurn., 46:2 (2005), 264–289 | MR | Zbl
[6] S. V. Astashkin., K. V. Lykov, “Ekstrapolyatsionnoe opisanie prostranstv Lorentsa i Martsinkevicha, “blizkikh” k $L_\infty$”, Sib. mat. zhurn., 47:5 (2006), 974–992 | MR | Zbl
[7] K. Bardos, E. S. Titi, “Uravneniya Eilera idealnoi neszhimaemoi zhidkosti”, Uspekhi mat. nauk, 62:3(375) (2007), 5–46 | MR | Zbl
[8] E. I. Berezhnoi, A. A. Perfilev, “Tochnaya teorema ekstrapolyatsii dlya operatorov”, Funkts. analiz ego ego pril., 34:3 (2000), 66–68 | MR | Zbl
[9] V. A. Vaigant, A. V. Kazhikhov, “O suschestvovanii globalnykh reshenii dvumernykh uravnenii Nave—Stoksa szhimaemoi vyazkoi zhidkosti”, Sib. mat. zhurnal, 36:6 (1995), 1283–1316 | MR
[10] M. I. Vishik, “O razreshimosti pervoi kraevoi zadachi dlya kvazilineinykh uravnenii s bystro rastuschimi koeffitsientami v klassakh Orlicha”, Doklady AN SSSR, 151:4 (1963), 758–761 | Zbl
[11] G. Genki, “Prostranstvennaya zadacha uprugogo i plasticheskogo ravnovesiya”, Izv. AN SSSR, OTN, 1937, no. 2
[12] R. Danshen, “Aksialno-simmetrichnye neszhimaemye potoki s ogranichennym vikhrem”, Uspekhi mat. nauk, 62:3(375) (2007), 73–94 | MR
[13] Yu. A. Dubinskii, “Nekotorye teoremy vlozheniya v klassakh Orlicha”, Doklady AN SSSR, 152:3 (1963), 529–532 | MR
[14] Yu. A. Dubinskii, “Slabaya skhodimost v nelineinykh ellipticheskikh i parabolicheskikh uravneniyakh”, Mat. Sb., 67(109):4 (1965), 609–642 | MR
[15] G. Dyuvo, Zh. L. Lions, Neravenstva v mekhanike i fizike, Nauka, M., 1980, 384 pp. | MR
[16] A. A. Ilyushin, “Deformatsiya vyazko-plasticheskogo tela”, Uch. zap. MGU, Mekhanika, 39, 1940
[17] A. V. Kazhikhov, A. E. Mamontov, “Ob odnom klasse vypuklykh funktsii i tochnykh klassakh korrektnosti zadachi Koshi dlya uravneniya perenosa v prostranstvakh Orlicha”, Sib. mat. zhurn., 39:4 (1998), 831–850 | MR | Zbl
[18] Ya. I. Kanel, “Ob odnoi modelnoi sisteme uravnenii odnomernogo dvizheniya gaza”, Diff. uravneniya, 4:4 (1968), 721–734 | MR | Zbl
[19] D. M. Klimov, A. G. Petrov, D. V. Georgievskii, Vyazkoplasticheskie techeniya: dinamicheskii khaos, ustoichivost, peremeshivanie, Nauka, M., 2005, 400 pp.
[20] O. I. Korolev, A. E. Mamontov, “O klassakh korrektnosti zadachi Koshi dlya slabonelineinogo uravneniya perenosa”, Vestnik NGU, seriya “matematika, mekhanika, informatika”, III:2 (2003), 46–61 | Zbl
[21] M. A. Krasnoselskii, Ya. B. Rutitskii, Vypuklye funktsii i prostranstva Orlicha, Fizmatgiz, M., 1958, 272 pp. | MR
[22] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978, 400 pp. | MR
[23] O. A. Ladyzhenskaya, “Novye uravneniya dlya opisaniya dvizheniya vyazkikh neszhimaemykh zhidkostei i globalnaya razreshimost kraevykh zadach dlya nikh”, Trudy MIAN SSSR, 102, 1967, 85–104 | Zbl
[24] O. A. Ladyzhenskaya, “O modifikatsiyakh uravnenii Nave–Stoksa dlya bolshikh gradientov skorostei”, Zap. nauch. sem. LOMI, 7, 1968, 126–154 | Zbl
[25] O. A. Ladyzhenskaya, “Shestaya problema tysyacheletiya: uravneniya Nave–Stoksa, suschestvovanie i gladkost”, Uspekhi mat. nauk, 58:2(350) (2003), 45–78 | MR | Zbl
[26] O. A. Ladyzhenskaya, G. A. Seregin, “O regulyarnosti reshenii dvumernykh uravnenii dinamiki zhidkostei s nelineinoi vyazkostyu”, Zap. nauch. sem. POMI, 259, 1999), 145–166 | MR | Zbl
[27] S. F. Lukomskii, “O skhodimosti ryadov Uolsha v prostranstvakh, blizkikh k $L_1$”, Matem. zametki, 70:6 (2001), 882–889 | MR
[28] K. V. Lykov, “Ekstrapolyatsiya v shkale $L_p$-prostranstv i skhodimost ortogonalnykh ryadov v prostranstvakh Martsinkevicha”, Vestnik SamGU, 2(42), 2006, 28–43 | MR
[29] K. V. Lykov, “Kriterii separabelnosti ekstrapolyatsionnogo prostranstva”, Vestnik SamGU, 4(44), 2006, 5–12 | MR | Zbl
[30] K. V. Lykov, “O dopolnyaemosti podprostranstv simmetrichnogo prostranstva, porozhdennykh szhatiyami i translyatsiyami”, Vestnik SamGU, 6/1(46), 2006 | Zbl
[31] A. E. Mamontov, “Ekstrapolyatsiya lineinykh operatorov iz $L_p$ v prostranstva Orlicha, porozhdennye bystro ili medlenno rastuschimi $N$-funktsiyami”, Aktualnye problemy sovremennoi matematiki, 2, NGU, Novosibirsk, 1996, 95–103 | Zbl
[32] A. E. Mamontov, “Suschestvovanie globalnykh reshenii mnogomernykh uravnenii Byurgersa szhimaemoi vyazkoi zhidkosti”, Mat. sb., 190:8 (1999), 61–80 | MR | Zbl
[33] A. E. Mamontov, “O globalnoi razreshimosti mnogomernykh uravnenii Nave–Stoksa szhimaemoi nelineino vyazkoi zhidkosti. I”, Sib. mat. zhurnal, 40:2 (1999), 408–420 | MR | Zbl
[34] A. E. Mamontov, “O globalnoi razreshimosti mnogomernykh uravnenii Nave–Stoksa szhimaemoi nelineino vyazkoi zhidkosti. II”, Sib. mat. zhurnal, 40:3 (1999), 635–649 | MR | Zbl
[35] A. E. Mamontov, “Otsenki globalnoi regulyarnosti dlya mnogomernykh uravnenii szhimaemoi nenyutonovskoi zhidkosti”, Mat. zametki, 68:3 (2000), 360–376 | MR | Zbl
[36] A. E. Mamontov, “Integralnye predstavleniya i preobrazovaniya $N$-funktsii. I”, Sib. mat. zhurnal, 47:1 (2006), 123–145 | MR | Zbl
[37] A. E. Mamontov, “Integralnye predstavleniya i preobrazovaniya $N$-funktsii. II”, Sib. mat. zhurnal, 47:4 (2006), 811–830 | MR | Zbl
[38] A. E. Mamontov, “Shkaly prostranstv $L_p$ i ikh svyaz s prostranstvami Orlicha”, Vestnik NGU, seriya “matematika, mekhanika, informatika”, 6, no. 2, 2006, 34–57 | MR
[39] A. E. Mamontov, “Suschestvovanie globalnykh reshenii mnogomernykh uravnenii szhimaemoi zhidkosti Bingama”, Mat. zametki, 82:4 (2007), 560–577 | MR | Zbl
[40] A. E. Mamontov, M. I. Uvarovskaya, “Nestatsionarnye techeniya idealnoi neszhimaemoi zhidkosti: usloviya suschestvovaniya i edinstvennosti reshenii”, Prikl. mekh. tekhn. fiz., 49:4 (2008), 130–145 | MR
[41] P. P. Mosolov, “O nekotorykh matematicheskikh voprosakh teorii neszhimaemykh vyazkoplasticheskikh sred”, Prikl. mat. mekh., 42:4 (1978), 737–746 | MR | Zbl
[42] P. P. Mosolov, V. P. Myasnikov, “Variatsionnye metody v teorii techenii vyazko-plasticheskoi sredy”, Prikl. mat. mekh., 29:3 (1965), 468–492 | Zbl
[43] P. P. Mosolov, V. P. Myasnikov, Variatsionnye metody v teorii techenii zhestko-vyazkoplasticheskikh sred, izd. MGU, M., 1971
[44] P. P. Mosolov, V. P. Myasnikov, Mekhanika zhestkoplasticheskikh sred, Nauka, M., 1981, 208 pp. | MR | Zbl
[45] A. Novotny, M. Padula, “Suschestvovanie i edinstvennost statsionarnykh reshenii uravnenii szhimaemoi vyazkoi teploprovodnoi zhidkosti pri bolshikh potentsialnykh i malykh nepotentsialnykh vneshnikh silakh”, Sib. mat. zhurn., 34:5 (1993), 120–146 | MR | Zbl
[46] Zh.-P. Oben, I. Ekland, Prikladnoi nelineinyi analiz, Mir, M., 1988, 512 pp. | MR
[47] P. I. Plotnikov, Zh. Sokolovski, “Statsionarnye resheniya uravnenii Nave–Stoksa dlya dvukhatomnykh gazov”, Uspekhi mat. nauk, 62:3(375) (2007), 117–148 | MR | Zbl
[48] S. I. Pokhozhaev, “O teoreme vlozheniya S. L. Soboleva v sluchae $pl=n$”, Dokl. nauch.-tekhn. konf., sektsiya matem., MEI, M., 1965, 158–170
[49] V. Prager, Vvedenie v mekhaniku sploshnykh sred, Izd. inostr. lit., M., 1963, 312 pp.
[50] K. R. Radzhagopal, “O nekotorykh nereshennykh problemakh nelineinoi dinamiki zhidkostei”, Uspekhi mat. nauk, 58:2(350) (2003), 111–122 | MR | Zbl
[51] G. A. Seregin, “O differentsiruemosti lokalnykh ekstremalei variatsionnykh zadach mekhaniki zhestko-vyazkoplasticheskikh sred”, Izv. VUZ, matematika, 10(305) (1987), 23–30 | MR | Zbl
[52] G. A. Seregin, “Ob attraktorakh dlya uravnenii, opisyvayuschikh techenie obobschennykh nyutonovskikh zhidkostei”, Zap. nauch. sem. POMI, 249, 1997, 256–293 | Zbl
[53] G. A. Seregin, “Techenie dvumernoi obobschennoi nyutonovskoi zhidkosti”, Algebra i analiz, 9:1 (1997), 167–200 | MR | Zbl
[54] Dzh. Serrin, Matematicheskie osnovy klassicheskoi mekhaniki zhidkosti, Izd. inostr. lit., M., 1963, 256 pp.
[55] I. B. Simonenko, “Interpolyatsiya i ekstrapolyatsiya lineinykh operatorov v prostranstvakh Orlicha”, Mat. sb., 63(105):4 (1964), 536–553 | MR | Zbl
[56] I. V. Skrypnik, Metody issledovaniya nelineinykh ellipticheskikh granichnykh zadach, Nauka, M., 1990, 448 pp. | MR
[57] E. Fairaizl, “Asimptoticheskii analiz polnoi sistemy Nave–Stoksa–Fure: ot techenii szhimaemoi k techeniyam neszhimaemoi zhidkosti”, Uspekhi mat. nauk, 62:3(375) (2007), 169–192 | MR
[58] V. I. Yudovich, “O nekotorykh otsenkakh, svyazannykh s integralnymi operatorami i resheniyami ellipticheskikh uravnenii”, Doklady AN SSSR, 138:4 (1961), 805–808 | Zbl
[59] V. I. Yudovich, “Nestatsionarnye techeniya idealnoi neszhimaemoi zhidkosti”, Zhurn. vych. mat. i mat. fiz., 3:6 (1963), 1032–1066 | Zbl
[60] V. I. Yudovich, “Dvumernaya nestatsionarnaya zadacha o protekanii idealnoi neszhimaemoi zhidkosti skvoz zadannuyu oblast”, Mat. sb., 64(106):4 (1964), 562–588 | MR
[61] V. I. Yudovich, Metod linearizatsii v gidrodinamicheskoi teorii ustoichivosti, Izd. Rost. un-ta, 1984, 192 pp. | Zbl
[62] R. A. Adams, “On the Orlicz—Sobolev imbedding theorem”, J. Func. Anal., 24 (1977), 241–257 | DOI | MR | Zbl
[63] L. Ambrosio, “Transport equation and Cauchy problem for BV vector fields”, Invent. Math., 158 (2004), 227–260 | DOI | MR | Zbl
[64] L. Ambrosio, G. Crippa, “Existence, uniqueness, stability and differentiability properties of the flow associated to weakly differentiable vector fields”, Proceedings of the school “Multi-D hyperbolic conservation laws” (Bologna, January 17–20 2005)
[65] L. Ambrosio, C. DeLellis, “Existence of solutions for a class of hyperbolic systems of conservation laws in several space dimensions”, Int. Math. Res. Not., 41 (2003), 2205–2220 | DOI | MR | Zbl
[66] L. Ambrosio, M. Lecumberry, S. Maniglia, “Lipschitz regularity and approximate differentiability of the DiPerna-Lions flow”, Rend. Sem. Mat. Univ. Padova, 114 (2005), 29–50 | MR | Zbl
[67] J. P. Aubin, “Une théorème de compacité”, C. R. Acad. Sc., 256 (1963), 5042–5044 | MR | Zbl
[68] I. V. Basov, V. V. Shelukhin, “Generalized solutions to the equations of compressible Bingham flows”, Z. Angew. Math. Mech., 79:3 (1999), 185–192 | 3.0.CO;2-N class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[69] I. V. Basov, V. V. Shelukhin, “Nonhomogeneous incompressible Bingham viscoplastic as a limit of nonlinear fluids”, J. Non-Newtonian Fluid Mech., 142:1–3 (2007), 95–103 | DOI | Zbl
[70] H. Bellout, F. Bloom, J. Nečas, “Young measure-valued solutions for non-Newtonian incompressible fluids”, Comm. in PDE, 19:11–12 (1994), 1763–1803 | DOI | MR | Zbl
[71] E. C. Bingham, Fluidity and Plasticity, McGrew–Hill Book Co., New York, 1922
[72] M. Böhm, “On a nonhomogeneous Bingham fluid”, J. Diff. Eq., 60:2 (1985), 259–284 | DOI | MR | Zbl
[73] F. Bouchut, “Renormalized solutions to the Vlasov equation with coefficients of bounded variation”, Arch. Rat. Mech. Anal., 157 (2001), 75–90 | DOI | MR | Zbl
[74] C. Capone, A. Fiorenza, M. Krbec, “On extrapolation blowups in the $L_p$-scale”, J. of Ineq. And Applicat., 2006 (2006), Article ID 74960 | MR | Zbl
[75] A. Cianchi, Embedding theorems for Sobolev–Orlicz spaces, preprint 15, Universita degli Studi di Firenze, 1994
[76] A. Cianchi, Interpolation of operators and the Sobolev embedding theorem in Orlicz spaces, Preprint 9, Universita degli Studi di Firenze, 1995 | MR
[77] F. Colombini, N. Lerner, “Uniqueness of continuous solutions for BV vector fields”, Duke Math. J., 111 (2002), 357–384 | DOI | MR | Zbl
[78] C. DeLellis, “Ordinary differential equations with rough coefficients and the renormalization theorem of Ambrosio (d'après Ambrosio, DiPerna, Lions)”, Séminaire Bourbaki, 2006/2007, Mars 2007, 59ème année, Exp. No. 972, Astérisque, 317, 2008, 175–203 | MR
[79] N. DePauw, Non-unicité du transport pour un champ de vecteurs presque BV. Seminaire: Équations aux Dérivées Partielles, 2002–2003, Exp. No. XIX, Sémin. Équ. Dériv. Partielles, École Polytech, Palaiseau, 2003 | MR
[80] N. DePauw, “Non unicité des solutions bornées pour un champ de vecteurs BV en dehors d'un hyperplan”, C. R. Acad. Sci. Paris, 337 (2003), 249–252 | MR | Zbl
[81] B. Desjardins, “A few remarks on ordinary differential equations”, Comm. PDE, 21:11–12 (1996), 1667–1703 | MR | Zbl
[82] B. Desjardins, “Linear transport equations with initial values in Sobolev spaces and application to the Navier–Stokes equations”, Diff. and Int. Eq., 10:3 (1997), 577–586 | MR | Zbl
[83] R. J. DiPerna, P.-L. Lions, “Ordinary differential equations, transport theory and Sobolev spaces”, Invent. Math., 98 (1989), 511–547 | DOI | MR | Zbl
[84] T. K. Donaldson, N. S. Trudinger, “Orlicz–Sobolev spaces and imbedding theorems”, J. Func. Anal., 8 (1971), 52–75 | DOI | MR | Zbl
[85] D. E. Edmunds, M. Krbec, “On decomposition in exponential Orlicz spaces”, Math. Nachr., 213 (2000), 77–88 | 3.0.CO;2-F class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[86] P. Gérard, “Résultats rénts sur les fluides parfaits incompressibles bidimensionelles (d'après J.-Y. Chemin et J.-M. Delort)”, Seminaire Bourbaki, 44ème ann. (1991–92), Exp. No. 757, Astérisque, 206, 1992, 411–444 | MR | Zbl
[87] W. E., Propagation of oscilations in the solutions of 1–d compressible fluid equations, Preprint
[88] C. L. Fefferman, Existence and smoothness of the Navier–Stokes equations, Electronic publication http://www.claymath.org/millennium/
[89] E. Feireisl, “On compactness of solutions to the compressible isentropic Navier–Stokes equations when the density is not square integrable”, Comment. Math. Univ. Carolin., 42:1 (2001), 83–98 | MR | Zbl
[90] E. Feireisl, Dynamics of viscous compressible fluids, Oxford Lecture Ser. Math. Appl., 26, Oxford Univ. Press, Oxford, 2004 | MR | Zbl
[91] E. Feireisl, S. Matusu-Necasova, H. Petzeltová, I. Straskraba, “On the motion of a viscous compressible fluid driven by a time-periodic external force”, Arch. Rat. Mech. Anal., 149:1 (1999), 69–96 | DOI | MR | Zbl
[92] E. Feireisl, A. H. Novotný, H. Petzeltová, “On the existence of globally defined weak solutions to the Navier–Stokes equations”, J. Math. Fluid Mech., 3:4 (2001), 358–392 | DOI | MR | Zbl
[93] E. Fernández-Cara, F. Guillén, R. R. Ortega, “Some theoretical results for visco-plastic and dilatant fluids with variable density”, Nonlinear Anal., Theory, Methods Appl., 28:6 (1997), 1079–1100 | DOI | MR | Zbl
[94] Fuchs M., Seregin G. A., “Regularity results for the quasi-static Bingham variational inequality in dimensions two and three”, Math. Z, 227 (1998), 525–541 | DOI | MR | Zbl
[95] M. Fuchs, G. Seregin, Variational methods for problems from plasticity theory and for generalized Newtonian fluids, Lecture Notes in Mathematics, 1749, Springer, 2000, 272 pp. | MR | Zbl
[96] J. G. R. Hempel, J. G. R. Morris, N. S. Trudinger, “On the sharpness of a limiting case of the Sobolev imbedding theorem”, Bull. Australian Math. Soc., 3 (1970), 369–373 | DOI | MR | Zbl
[97] D. Hoff, “Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data”, Arch. Ration. Mech. Anal., 132 (1995), 1–14 | DOI | MR | Zbl
[98] K. Hohenemser, W. Prager, Zeitschrift f. angew. Math. Mech., 12 (1932), 216 | DOI
[99] B. Jawerth, M. Milman, Extrapolation theory with applications, Mem. Amer. Math. Soc., 89, no. 440, 1991, 82 pp. | MR
[100] B. Jawerth, M. Milman, “New Results and Applications of Extrapolation Theory”, Interpolation spaces and related topics (Haifa, 1990), Israel Math. Conference Proc., 5, 1992, 81–105 | MR | Zbl
[101] S. Kaniel, “On the initial value problem for an incompressible fluid with nonlinear viscosity”, J. Math. Mech., 19:8 (1970), 681–707 | MR | Zbl
[102] P. Kaplický, J. Málek, J. Stará, “$C^{1,\alpha}$-solutions to a class of nonlinear fluids in two dimensions – stationary Dirichlet problem”, Zap. nauch. sem. POMI, 259, 1999, 89–121 | MR | Zbl
[103] G. Karadzhov, M. Milman, “Extrapolation theory: New results and applications”, J. Approx. Theory, 133:1 (2005), 38–99 | DOI | MR | Zbl
[104] Y. Kato, “Variational inequalities of Bingham type in three dimensions”, Nagoya Math. J., 129 (1993), 53–95 | MR | Zbl
[105] A. V. Kazhikhov, V. V. Shelukhin, “The verification compactness method”, Aktualnye problemy sovremennoi matematiki, 2, Izd-vo Novosib. gos un-ta, 1996, 51–60
[106] R. A. Kerman, Studia Math., 76 (1983), 183–195 | MR | Zbl
[107] J. U. Kim, “On the initial-boundary value problem for a Bingham fluid in a three dimensional domain”, Trans. AMS, 304 (1987), 751–770 | MR | Zbl
[108] A. Kufner, S. Fuc̆ik, O. John, Function Spaces, Academia, Prague, 1977, 454 pp. | MR | Zbl
[109] O. A. Ladyzhenskaya, G. A. Seregin, “On semigroups generated by initial boundary value problems describing two-dimensional visco-plastic flows”, Nonlinear evolution equations, AMS Transl., Ser. 2, 164, 1995, 99–123 | MR | Zbl
[110] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, v. 2, Function spaces, Springer-Verlag, Berlin, Heidelberg, New York, 1979, 244 pp. | MR
[111] P.-L. Lions, “Existence globale de solutions pour les équations de Navier–Stokes compressible isentropiques”, C. R. Acad. Sci. Paris, 316 (1993), 1335–1340 | MR | Zbl
[112] P.-L. Lions, “Compacité des solutions des equations de Navier–Stokes compressible isentropiques”, Comp. Ren. Acad. Sci. Paris, Ser. I Math., 317:1 (1993), 115–120 | MR | Zbl
[113] P.-L. Lions, Mathematical Topics in Fluid Mechanics, v. 2, Compressible models, Clarendon Press, Oxford, 1998, 348 pp. | MR
[114] P.-L. Lions, “Sur les équations différentielles ordinaires et les équations de transport”, C. R. Acad. Sci., Paris, Sér. I Math., 326 (1998), 833–838 | MR | Zbl
[115] P.-L. Lions, “Bornes sur la densité pour les équations de Navier–Stokes compressibles isentropiques avec conditions aux limites de Dirichlet”, C. R. Acad. Sci. Paris. Ser. I Math., 328:8 (1999), 659–662 | MR | Zbl
[116] P.-L. Lions, “On some challenging problems in nonlinear partial differential equations”, Mathematics: frontiers and perspectives, eds. V. Arnold et al., Ainer. Malli Soc., Providence, RI, 2000, 121–135 | MR
[117] S. F. Lukomskii, “Convergence of Fourier series in Lorentz spaces”, East J. on Approx, 9:2 (2003), 229–238 | MR | Zbl
[118] J. Málek, J. Nečas, M. Rokyta, M. Růžička, Weak and Measure-Valued Solutions to Evolutionary PDEs, Chapman Hall, London, 1996, 318 pp. | MR | Zbl
[119] J. Málek, J. Nečas, M. Růžička, “On the non-Newtonian incompressible fluids”, Math. Models and Methods in Appl. Sci., 3:1 (1993), 35–63 | DOI | MR | Zbl
[120] J. Málek, M. Růžička, V. V. Shelukhin, “Hershel–Bulkley fluids: existence and regularity of steady flows”, Math. Models and Methods in Appl. Sciences, 15:12 (2005), 1845–1861 | DOI | MR | Zbl
[121] C. Marchioro, M. Pulvirenti, Mathematical theory of incompressible nonviscous fluids, Appl. Math. Sci., 96, Springer–Verlag, New York, 1994 | MR | Zbl
[122] A. Matsumura, T. Nishida, “The initial value problem for the equations of motion of viscous and heat-conductive gases”, J. Math. Kyoto Univ., 20:1 (1980), 67–104 | MR | Zbl
[123] S. Matus̆ů–Nec̆asová, A. Novotný, “Measure-valued solution for non-Newtonian compressible isothermal monopolar fluid”, Acta Appl. Math., 37:1–2 (1994), 109–128 | MR | Zbl
[124] M. Milman, Extrapolation and optimal decompositions with applications to analysis, Lecture Notes in Math., 1580, Springer-Verlag, Berlin, 1994, 162 pp. | MR | Zbl
[125] M. Milman, “Extrapolation spaces and a. e. convergence of Fourier series”, J. of Approx. Theory, 80:1 (1995), 10–24 | DOI | MR | Zbl
[126] J. Nec̆as, A. Novotný, M. v{S}hilhavý, “Global solution to the ideal compressible heat-conductive fluid”, Comment. Math. Univ. Carolinae, 30:3 (1989), 551–564 | MR | Zbl
[127] J. Nec̆as, A. Novotný, M. Šhilhavý, “Global solution to the compressible isothermal multipolar fluid”, J. Math. Anal. Appl., 162 (1990), 223–241 | MR
[128] J. Neustupa, “Measure-valued solutions of the Euler and Navier–Stokes equations for compressible barotropic fluids”, Math. Nachr., 163 (1993), 217–227 | DOI | MR | Zbl
[129] J. Neves, “On decompositions in generalized Lorentz–Zygmund spaces”, Boll. Unione Mat. Ital. Sez. B. Artic. Ric. Mat. (8), 4:1 (2001), 239–267 | MR | Zbl
[130] A. Novotný, “Viscous multipolar fluids – physical background and mathematical theory”, Fortschritte der Physik, 40:5 (1992), 445–517 | DOI | MR
[131] A. Novotný, Compactness of steady compressible isentropic Navier–Stokes equations via the decomposition method (the whole $\mathbb R^n$), Preprint of the Univ. of Toulon, 1995
[132] A. Novotný, “Some remarks to the compactness of steady compressible isentropic Navier–Stokes equations via the decomposition method”, Comment. Math. Univ. Carolinae, 37:2 (1996), 305–342 | MR | Zbl
[133] A. Novotný, M. Padula, “$L^p$-Approach to Steady flows of Viscous Compressible Fluids in Exterior Domains”, Arch. Rat. Mech. Anal., 126 (1994), 243–297 | DOI | MR | Zbl
[134] A. Novotný, I. Straskraba, Introduction to the mathematical theory of compressible flow, Oxford Lecture Series in Mathematics and its Applications, 27, Oxford University Press, Oxford, 2004 | MR | Zbl
[135] J. G. Oldroyd, Proc. Cambridge Plilos. Soc., 43:100 (1947) | MR
[136] R. O'Neil, C. R. Acad. Sci. Paris, Ser. A–B, 263 (1966), A463–A466 | MR
[137] M. Padula, “Existence of global solutions for 2-dimensional viscous compressible flows”, J. of Func. Anal., 69 (1986), 1–20 | DOI | MR | Zbl
[138] M. Padula, “Erratum to J. Func. Anal. 69(1986), 1–20”, J. Func. Anal., 76:1 (1988), 231 | DOI | MR
[139] M. Padula, “Erratum to J. Func. Anal. 69(1986), 1–20”, J. Func. Anal., 77 (1988), 232 | DOI | MR | Zbl
[140] P. I. Plotnikov, J. Sokolowski, “Stationary boundary value problems for compressible Navier–Stokes equations”, Handbook of Differential Equations: Stationary Partial Differential Equations, v. 6, ed. Michel Chipot, 2008, 313–410 | MR | Zbl
[141] W. Prager, Mécanique des solides isotropes au delà du domaine elastique, Paris, 1937
[142] K. R. Rajagopal, “Mechanics of non-Newtonian fluids”, Recent developments in theoretical fluid mechanics, Pitman Res. Notes Math. Ser., 291, eds. G. P. Galdi, J. Necas, Longman, Harlow, 1993, 129–162 | MR | Zbl
[143] V. Scheffer, “An inviscid flow with compact support in space-time”, J. Geom. Anal., 3:4 (1993), 343–401 | MR | Zbl
[144] G. A. Seregin, “Continuity for the strain velocity tensor in two-dimensional variational problems from the theory of the Bingham fluid”, Italian J. Pure Appl. Math., 2 (1997), 141–150 | MR | Zbl
[145] D. Serre, “Variations de grande amplitude pour la densité d'un fluide visqueux compressible”, Physica D, 48 (1991), 113–128 | DOI | MR | Zbl
[146] J. Serrin, “On the uniqueness of compressible fluid motion”, Arch. Rational Mech. Anal., 3:3 (1959), 271–288 | DOI | MR | Zbl
[147] V. V. Shelukhin, “Bingham viscoplastic as a limit of non-newtonian fluids”, J. of Math. Fluid Mechanics, 4 (2002), 109–127 | DOI | MR | Zbl
[148] A. Shnirelman, “On the nonuniqueness of weak solution of the Euler equation”, Comm. Pure Appl. Math., 50:12 (1997), 1261–1286 | 3.0.CO;2-6 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[149] F. N. Shwedov, “La rigidité de liquides”, Rapport Congr. Intern. Phys., Paris, 1 (1900), 478–486
[150] J. Simon, “Compact sets in the space $L_p(0,T;B)$”, Ann. Mat. Pura Appl., 146 (1987), 65–96 | DOI | MR | Zbl
[151] S. Smale, “Mathematical problems for the next century”, Math. Intelligencer, 20:2 (1998), 476–512 | DOI | MR
[152] D. N. Smyrnaios, J. A. Tsamopoulos, “Squeeze flow of Bingham plastics”, J. Non-Newtonian Fluid Mech., 100:13 (2001), 165–189 | DOI
[153] G. Talenti, “Best constant in Sobolev inequality”, Ann. Mat. Pura Appl., 110 (1976), 353–372 | DOI | MR | Zbl
[154] G. Talenti, “An embedding theorem”, Partial differential equations and the calculus of variations, Essays of Math. Anal. in honour of E. DeGiorgi, v. II, Birkhauser Verlag, Boston, 1989, 919–924 | MR
[155] N. S. Trudinger, “On imbeddings into Orlicz spaces and some applications”, J. Math. Mech., 17 (1967), 473–483 | MR | Zbl
[156] C. Truesdell, W. Noll, The nonlinear field theories of mechanics, Handbuch der Physik, III/3, Springer, Berlin, 1965 | MR
[157] M. Vishik, “Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type”, Ann. Sci. École Norm. Sup. (4), 32:6 (1999), 769–812 | MR | Zbl
[158] V. A. Weigant (V. A. Vaigant), “Unique solvability “in the large” of the initial boundary value problem for the two-dimensional Navier–Stokes equations of the viscous compressible fluid with Van-der-Vaals type state function and the bulk viscosity depending on density”, Siberian Advances in Math., 6:2 (1996), 106–150 | MR
[159] S. Yano, “An extrapolation theorem”, J. Math. Soc. Japan, 3:2 (1951), 296–305 | DOI | MR | Zbl
[160] V. I. Yudovich, “Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid”, Mathematical Research Letters, 2 (1995), 27–38 | MR | Zbl