Global solvability of the multidimensional equations of compressible non-Newtonian fluids, transport equation and the Orlicz spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 120-165.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article illustrates the application of the theory of the Orlicz spaces in global solvability of boundary value problems for the equations of multidimensional flows of viscous compressible fluids and for the transport equation. While solving the main problem, a new method of extrapolation from the scale of the Lebesgue spaces into the Orlicz spaces is developed basing on integral representations and transforms of $N$-functions. The efficiency of the extrapolation method developed here is illustrated by the uniqueness problem for the Euler equations. A wide review of known results is given wherever necessary.
@article{SEMR_2009_6_a6,
     author = {A. E. Mamontov},
     title = {Global solvability of the multidimensional equations of compressible {non-Newtonian} fluids, transport equation and the {Orlicz} spaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {120--165},
     publisher = {mathdoc},
     volume = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a6/}
}
TY  - JOUR
AU  - A. E. Mamontov
TI  - Global solvability of the multidimensional equations of compressible non-Newtonian fluids, transport equation and the Orlicz spaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2009
SP  - 120
EP  - 165
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a6/
LA  - ru
ID  - SEMR_2009_6_a6
ER  - 
%0 Journal Article
%A A. E. Mamontov
%T Global solvability of the multidimensional equations of compressible non-Newtonian fluids, transport equation and the Orlicz spaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2009
%P 120-165
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a6/
%G ru
%F SEMR_2009_6_a6
A. E. Mamontov. Global solvability of the multidimensional equations of compressible non-Newtonian fluids, transport equation and the Orlicz spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 120-165. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a6/

[1] S. N. Antontsev, A. V. Kazhikhov, V. N. Monakhov, Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Sib. otd., Novosibirsk, 1983, 320 pp. | MR | Zbl

[2] Dzh. Astarita, Dzh. Marruchchi, Osnovy gidromekhaniki nenyutonovskikh zhidkostei, Mir, M., 1978, 312 pp.

[3] S. V. Astashkin, “Novye ekstrapolyatsionnye sootnosheniya v shkale $L_p$-prostranstv”, Funk. analiz i ego pril., 37:3 (2003), 73–77 | MR | Zbl

[4] S. V. Astashkin, “Ob ekstrapolyatsionnykh svoistvakh shkaly $L_p$-prostranstv”, Matem. sbornik, 194:6 (2003), 23–42 | MR | Zbl

[5] S. V. Astashkin, “Ekstrapolyatsionnye funktory na semeistve shkal, porozhdennykh veschestvennym metodom interpolyatsii”, Sib. mat. zhurn., 46:2 (2005), 264–289 | MR | Zbl

[6] S. V. Astashkin., K. V. Lykov, “Ekstrapolyatsionnoe opisanie prostranstv Lorentsa i Martsinkevicha, “blizkikh” k $L_\infty$”, Sib. mat. zhurn., 47:5 (2006), 974–992 | MR | Zbl

[7] K. Bardos, E. S. Titi, “Uravneniya Eilera idealnoi neszhimaemoi zhidkosti”, Uspekhi mat. nauk, 62:3(375) (2007), 5–46 | MR | Zbl

[8] E. I. Berezhnoi, A. A. Perfilev, “Tochnaya teorema ekstrapolyatsii dlya operatorov”, Funkts. analiz ego ego pril., 34:3 (2000), 66–68 | MR | Zbl

[9] V. A. Vaigant, A. V. Kazhikhov, “O suschestvovanii globalnykh reshenii dvumernykh uravnenii Nave—Stoksa szhimaemoi vyazkoi zhidkosti”, Sib. mat. zhurnal, 36:6 (1995), 1283–1316 | MR

[10] M. I. Vishik, “O razreshimosti pervoi kraevoi zadachi dlya kvazilineinykh uravnenii s bystro rastuschimi koeffitsientami v klassakh Orlicha”, Doklady AN SSSR, 151:4 (1963), 758–761 | Zbl

[11] G. Genki, “Prostranstvennaya zadacha uprugogo i plasticheskogo ravnovesiya”, Izv. AN SSSR, OTN, 1937, no. 2

[12] R. Danshen, “Aksialno-simmetrichnye neszhimaemye potoki s ogranichennym vikhrem”, Uspekhi mat. nauk, 62:3(375) (2007), 73–94 | MR

[13] Yu. A. Dubinskii, “Nekotorye teoremy vlozheniya v klassakh Orlicha”, Doklady AN SSSR, 152:3 (1963), 529–532 | MR

[14] Yu. A. Dubinskii, “Slabaya skhodimost v nelineinykh ellipticheskikh i parabolicheskikh uravneniyakh”, Mat. Sb., 67(109):4 (1965), 609–642 | MR

[15] G. Dyuvo, Zh. L. Lions, Neravenstva v mekhanike i fizike, Nauka, M., 1980, 384 pp. | MR

[16] A. A. Ilyushin, “Deformatsiya vyazko-plasticheskogo tela”, Uch. zap. MGU, Mekhanika, 39, 1940

[17] A. V. Kazhikhov, A. E. Mamontov, “Ob odnom klasse vypuklykh funktsii i tochnykh klassakh korrektnosti zadachi Koshi dlya uravneniya perenosa v prostranstvakh Orlicha”, Sib. mat. zhurn., 39:4 (1998), 831–850 | MR | Zbl

[18] Ya. I. Kanel, “Ob odnoi modelnoi sisteme uravnenii odnomernogo dvizheniya gaza”, Diff. uravneniya, 4:4 (1968), 721–734 | MR | Zbl

[19] D. M. Klimov, A. G. Petrov, D. V. Georgievskii, Vyazkoplasticheskie techeniya: dinamicheskii khaos, ustoichivost, peremeshivanie, Nauka, M., 2005, 400 pp.

[20] O. I. Korolev, A. E. Mamontov, “O klassakh korrektnosti zadachi Koshi dlya slabonelineinogo uravneniya perenosa”, Vestnik NGU, seriya “matematika, mekhanika, informatika”, III:2 (2003), 46–61 | Zbl

[21] M. A. Krasnoselskii, Ya. B. Rutitskii, Vypuklye funktsii i prostranstva Orlicha, Fizmatgiz, M., 1958, 272 pp. | MR

[22] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978, 400 pp. | MR

[23] O. A. Ladyzhenskaya, “Novye uravneniya dlya opisaniya dvizheniya vyazkikh neszhimaemykh zhidkostei i globalnaya razreshimost kraevykh zadach dlya nikh”, Trudy MIAN SSSR, 102, 1967, 85–104 | Zbl

[24] O. A. Ladyzhenskaya, “O modifikatsiyakh uravnenii Nave–Stoksa dlya bolshikh gradientov skorostei”, Zap. nauch. sem. LOMI, 7, 1968, 126–154 | Zbl

[25] O. A. Ladyzhenskaya, “Shestaya problema tysyacheletiya: uravneniya Nave–Stoksa, suschestvovanie i gladkost”, Uspekhi mat. nauk, 58:2(350) (2003), 45–78 | MR | Zbl

[26] O. A. Ladyzhenskaya, G. A. Seregin, “O regulyarnosti reshenii dvumernykh uravnenii dinamiki zhidkostei s nelineinoi vyazkostyu”, Zap. nauch. sem. POMI, 259, 1999), 145–166 | MR | Zbl

[27] S. F. Lukomskii, “O skhodimosti ryadov Uolsha v prostranstvakh, blizkikh k $L_1$”, Matem. zametki, 70:6 (2001), 882–889 | MR

[28] K. V. Lykov, “Ekstrapolyatsiya v shkale $L_p$-prostranstv i skhodimost ortogonalnykh ryadov v prostranstvakh Martsinkevicha”, Vestnik SamGU, 2(42), 2006, 28–43 | MR

[29] K. V. Lykov, “Kriterii separabelnosti ekstrapolyatsionnogo prostranstva”, Vestnik SamGU, 4(44), 2006, 5–12 | MR | Zbl

[30] K. V. Lykov, “O dopolnyaemosti podprostranstv simmetrichnogo prostranstva, porozhdennykh szhatiyami i translyatsiyami”, Vestnik SamGU, 6/1(46), 2006 | Zbl

[31] A. E. Mamontov, “Ekstrapolyatsiya lineinykh operatorov iz $L_p$ v prostranstva Orlicha, porozhdennye bystro ili medlenno rastuschimi $N$-funktsiyami”, Aktualnye problemy sovremennoi matematiki, 2, NGU, Novosibirsk, 1996, 95–103 | Zbl

[32] A. E. Mamontov, “Suschestvovanie globalnykh reshenii mnogomernykh uravnenii Byurgersa szhimaemoi vyazkoi zhidkosti”, Mat. sb., 190:8 (1999), 61–80 | MR | Zbl

[33] A. E. Mamontov, “O globalnoi razreshimosti mnogomernykh uravnenii Nave–Stoksa szhimaemoi nelineino vyazkoi zhidkosti. I”, Sib. mat. zhurnal, 40:2 (1999), 408–420 | MR | Zbl

[34] A. E. Mamontov, “O globalnoi razreshimosti mnogomernykh uravnenii Nave–Stoksa szhimaemoi nelineino vyazkoi zhidkosti. II”, Sib. mat. zhurnal, 40:3 (1999), 635–649 | MR | Zbl

[35] A. E. Mamontov, “Otsenki globalnoi regulyarnosti dlya mnogomernykh uravnenii szhimaemoi nenyutonovskoi zhidkosti”, Mat. zametki, 68:3 (2000), 360–376 | MR | Zbl

[36] A. E. Mamontov, “Integralnye predstavleniya i preobrazovaniya $N$-funktsii. I”, Sib. mat. zhurnal, 47:1 (2006), 123–145 | MR | Zbl

[37] A. E. Mamontov, “Integralnye predstavleniya i preobrazovaniya $N$-funktsii. II”, Sib. mat. zhurnal, 47:4 (2006), 811–830 | MR | Zbl

[38] A. E. Mamontov, “Shkaly prostranstv $L_p$ i ikh svyaz s prostranstvami Orlicha”, Vestnik NGU, seriya “matematika, mekhanika, informatika”, 6, no. 2, 2006, 34–57 | MR

[39] A. E. Mamontov, “Suschestvovanie globalnykh reshenii mnogomernykh uravnenii szhimaemoi zhidkosti Bingama”, Mat. zametki, 82:4 (2007), 560–577 | MR | Zbl

[40] A. E. Mamontov, M. I. Uvarovskaya, “Nestatsionarnye techeniya idealnoi neszhimaemoi zhidkosti: usloviya suschestvovaniya i edinstvennosti reshenii”, Prikl. mekh. tekhn. fiz., 49:4 (2008), 130–145 | MR

[41] P. P. Mosolov, “O nekotorykh matematicheskikh voprosakh teorii neszhimaemykh vyazkoplasticheskikh sred”, Prikl. mat. mekh., 42:4 (1978), 737–746 | MR | Zbl

[42] P. P. Mosolov, V. P. Myasnikov, “Variatsionnye metody v teorii techenii vyazko-plasticheskoi sredy”, Prikl. mat. mekh., 29:3 (1965), 468–492 | Zbl

[43] P. P. Mosolov, V. P. Myasnikov, Variatsionnye metody v teorii techenii zhestko-vyazkoplasticheskikh sred, izd. MGU, M., 1971

[44] P. P. Mosolov, V. P. Myasnikov, Mekhanika zhestkoplasticheskikh sred, Nauka, M., 1981, 208 pp. | MR | Zbl

[45] A. Novotny, M. Padula, “Suschestvovanie i edinstvennost statsionarnykh reshenii uravnenii szhimaemoi vyazkoi teploprovodnoi zhidkosti pri bolshikh potentsialnykh i malykh nepotentsialnykh vneshnikh silakh”, Sib. mat. zhurn., 34:5 (1993), 120–146 | MR | Zbl

[46] Zh.-P. Oben, I. Ekland, Prikladnoi nelineinyi analiz, Mir, M., 1988, 512 pp. | MR

[47] P. I. Plotnikov, Zh. Sokolovski, “Statsionarnye resheniya uravnenii Nave–Stoksa dlya dvukhatomnykh gazov”, Uspekhi mat. nauk, 62:3(375) (2007), 117–148 | MR | Zbl

[48] S. I. Pokhozhaev, “O teoreme vlozheniya S. L. Soboleva v sluchae $pl=n$”, Dokl. nauch.-tekhn. konf., sektsiya matem., MEI, M., 1965, 158–170

[49] V. Prager, Vvedenie v mekhaniku sploshnykh sred, Izd. inostr. lit., M., 1963, 312 pp.

[50] K. R. Radzhagopal, “O nekotorykh nereshennykh problemakh nelineinoi dinamiki zhidkostei”, Uspekhi mat. nauk, 58:2(350) (2003), 111–122 | MR | Zbl

[51] G. A. Seregin, “O differentsiruemosti lokalnykh ekstremalei variatsionnykh zadach mekhaniki zhestko-vyazkoplasticheskikh sred”, Izv. VUZ, matematika, 10(305) (1987), 23–30 | MR | Zbl

[52] G. A. Seregin, “Ob attraktorakh dlya uravnenii, opisyvayuschikh techenie obobschennykh nyutonovskikh zhidkostei”, Zap. nauch. sem. POMI, 249, 1997, 256–293 | Zbl

[53] G. A. Seregin, “Techenie dvumernoi obobschennoi nyutonovskoi zhidkosti”, Algebra i analiz, 9:1 (1997), 167–200 | MR | Zbl

[54] Dzh. Serrin, Matematicheskie osnovy klassicheskoi mekhaniki zhidkosti, Izd. inostr. lit., M., 1963, 256 pp.

[55] I. B. Simonenko, “Interpolyatsiya i ekstrapolyatsiya lineinykh operatorov v prostranstvakh Orlicha”, Mat. sb., 63(105):4 (1964), 536–553 | MR | Zbl

[56] I. V. Skrypnik, Metody issledovaniya nelineinykh ellipticheskikh granichnykh zadach, Nauka, M., 1990, 448 pp. | MR

[57] E. Fairaizl, “Asimptoticheskii analiz polnoi sistemy Nave–Stoksa–Fure: ot techenii szhimaemoi k techeniyam neszhimaemoi zhidkosti”, Uspekhi mat. nauk, 62:3(375) (2007), 169–192 | MR

[58] V. I. Yudovich, “O nekotorykh otsenkakh, svyazannykh s integralnymi operatorami i resheniyami ellipticheskikh uravnenii”, Doklady AN SSSR, 138:4 (1961), 805–808 | Zbl

[59] V. I. Yudovich, “Nestatsionarnye techeniya idealnoi neszhimaemoi zhidkosti”, Zhurn. vych. mat. i mat. fiz., 3:6 (1963), 1032–1066 | Zbl

[60] V. I. Yudovich, “Dvumernaya nestatsionarnaya zadacha o protekanii idealnoi neszhimaemoi zhidkosti skvoz zadannuyu oblast”, Mat. sb., 64(106):4 (1964), 562–588 | MR

[61] V. I. Yudovich, Metod linearizatsii v gidrodinamicheskoi teorii ustoichivosti, Izd. Rost. un-ta, 1984, 192 pp. | Zbl

[62] R. A. Adams, “On the Orlicz—Sobolev imbedding theorem”, J. Func. Anal., 24 (1977), 241–257 | DOI | MR | Zbl

[63] L. Ambrosio, “Transport equation and Cauchy problem for BV vector fields”, Invent. Math., 158 (2004), 227–260 | DOI | MR | Zbl

[64] L. Ambrosio, G. Crippa, “Existence, uniqueness, stability and differentiability properties of the flow associated to weakly differentiable vector fields”, Proceedings of the school “Multi-D hyperbolic conservation laws” (Bologna, January 17–20 2005)

[65] L. Ambrosio, C. DeLellis, “Existence of solutions for a class of hyperbolic systems of conservation laws in several space dimensions”, Int. Math. Res. Not., 41 (2003), 2205–2220 | DOI | MR | Zbl

[66] L. Ambrosio, M. Lecumberry, S. Maniglia, “Lipschitz regularity and approximate differentiability of the DiPerna-Lions flow”, Rend. Sem. Mat. Univ. Padova, 114 (2005), 29–50 | MR | Zbl

[67] J. P. Aubin, “Une théorème de compacité”, C. R. Acad. Sc., 256 (1963), 5042–5044 | MR | Zbl

[68] I. V. Basov, V. V. Shelukhin, “Generalized solutions to the equations of compressible Bingham flows”, Z. Angew. Math. Mech., 79:3 (1999), 185–192 | 3.0.CO;2-N class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[69] I. V. Basov, V. V. Shelukhin, “Nonhomogeneous incompressible Bingham viscoplastic as a limit of nonlinear fluids”, J. Non-Newtonian Fluid Mech., 142:1–3 (2007), 95–103 | DOI | Zbl

[70] H. Bellout, F. Bloom, J. Nečas, “Young measure-valued solutions for non-Newtonian incompressible fluids”, Comm. in PDE, 19:11–12 (1994), 1763–1803 | DOI | MR | Zbl

[71] E. C. Bingham, Fluidity and Plasticity, McGrew–Hill Book Co., New York, 1922

[72] M. Böhm, “On a nonhomogeneous Bingham fluid”, J. Diff. Eq., 60:2 (1985), 259–284 | DOI | MR | Zbl

[73] F. Bouchut, “Renormalized solutions to the Vlasov equation with coefficients of bounded variation”, Arch. Rat. Mech. Anal., 157 (2001), 75–90 | DOI | MR | Zbl

[74] C. Capone, A. Fiorenza, M. Krbec, “On extrapolation blowups in the $L_p$-scale”, J. of Ineq. And Applicat., 2006 (2006), Article ID 74960 | MR | Zbl

[75] A. Cianchi, Embedding theorems for Sobolev–Orlicz spaces, preprint 15, Universita degli Studi di Firenze, 1994

[76] A. Cianchi, Interpolation of operators and the Sobolev embedding theorem in Orlicz spaces, Preprint 9, Universita degli Studi di Firenze, 1995 | MR

[77] F. Colombini, N. Lerner, “Uniqueness of continuous solutions for BV vector fields”, Duke Math. J., 111 (2002), 357–384 | DOI | MR | Zbl

[78] C. DeLellis, “Ordinary differential equations with rough coefficients and the renormalization theorem of Ambrosio (d'après Ambrosio, DiPerna, Lions)”, Séminaire Bourbaki, 2006/2007, Mars 2007, 59ème année, Exp. No. 972, Astérisque, 317, 2008, 175–203 | MR

[79] N. DePauw, Non-unicité du transport pour un champ de vecteurs presque BV. Seminaire: Équations aux Dérivées Partielles, 2002–2003, Exp. No. XIX, Sémin. Équ. Dériv. Partielles, École Polytech, Palaiseau, 2003 | MR

[80] N. DePauw, “Non unicité des solutions bornées pour un champ de vecteurs BV en dehors d'un hyperplan”, C. R. Acad. Sci. Paris, 337 (2003), 249–252 | MR | Zbl

[81] B. Desjardins, “A few remarks on ordinary differential equations”, Comm. PDE, 21:11–12 (1996), 1667–1703 | MR | Zbl

[82] B. Desjardins, “Linear transport equations with initial values in Sobolev spaces and application to the Navier–Stokes equations”, Diff. and Int. Eq., 10:3 (1997), 577–586 | MR | Zbl

[83] R. J. DiPerna, P.-L. Lions, “Ordinary differential equations, transport theory and Sobolev spaces”, Invent. Math., 98 (1989), 511–547 | DOI | MR | Zbl

[84] T. K. Donaldson, N. S. Trudinger, “Orlicz–Sobolev spaces and imbedding theorems”, J. Func. Anal., 8 (1971), 52–75 | DOI | MR | Zbl

[85] D. E. Edmunds, M. Krbec, “On decomposition in exponential Orlicz spaces”, Math. Nachr., 213 (2000), 77–88 | 3.0.CO;2-F class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[86] P. Gérard, “Résultats rénts sur les fluides parfaits incompressibles bidimensionelles (d'après J.-Y. Chemin et J.-M. Delort)”, Seminaire Bourbaki, 44ème ann. (1991–92), Exp. No. 757, Astérisque, 206, 1992, 411–444 | MR | Zbl

[87] W. E., Propagation of oscilations in the solutions of 1–d compressible fluid equations, Preprint

[88] C. L. Fefferman, Existence and smoothness of the Navier–Stokes equations, Electronic publication http://www.claymath.org/millennium/

[89] E. Feireisl, “On compactness of solutions to the compressible isentropic Navier–Stokes equations when the density is not square integrable”, Comment. Math. Univ. Carolin., 42:1 (2001), 83–98 | MR | Zbl

[90] E. Feireisl, Dynamics of viscous compressible fluids, Oxford Lecture Ser. Math. Appl., 26, Oxford Univ. Press, Oxford, 2004 | MR | Zbl

[91] E. Feireisl, S. Matusu-Necasova, H. Petzeltová, I. Straskraba, “On the motion of a viscous compressible fluid driven by a time-periodic external force”, Arch. Rat. Mech. Anal., 149:1 (1999), 69–96 | DOI | MR | Zbl

[92] E. Feireisl, A. H. Novotný, H. Petzeltová, “On the existence of globally defined weak solutions to the Navier–Stokes equations”, J. Math. Fluid Mech., 3:4 (2001), 358–392 | DOI | MR | Zbl

[93] E. Fernández-Cara, F. Guillén, R. R. Ortega, “Some theoretical results for visco-plastic and dilatant fluids with variable density”, Nonlinear Anal., Theory, Methods Appl., 28:6 (1997), 1079–1100 | DOI | MR | Zbl

[94] Fuchs M., Seregin G. A., “Regularity results for the quasi-static Bingham variational inequality in dimensions two and three”, Math. Z, 227 (1998), 525–541 | DOI | MR | Zbl

[95] M. Fuchs, G. Seregin, Variational methods for problems from plasticity theory and for generalized Newtonian fluids, Lecture Notes in Mathematics, 1749, Springer, 2000, 272 pp. | MR | Zbl

[96] J. G. R. Hempel, J. G. R. Morris, N. S. Trudinger, “On the sharpness of a limiting case of the Sobolev imbedding theorem”, Bull. Australian Math. Soc., 3 (1970), 369–373 | DOI | MR | Zbl

[97] D. Hoff, “Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data”, Arch. Ration. Mech. Anal., 132 (1995), 1–14 | DOI | MR | Zbl

[98] K. Hohenemser, W. Prager, Zeitschrift f. angew. Math. Mech., 12 (1932), 216 | DOI

[99] B. Jawerth, M. Milman, Extrapolation theory with applications, Mem. Amer. Math. Soc., 89, no. 440, 1991, 82 pp. | MR

[100] B. Jawerth, M. Milman, “New Results and Applications of Extrapolation Theory”, Interpolation spaces and related topics (Haifa, 1990), Israel Math. Conference Proc., 5, 1992, 81–105 | MR | Zbl

[101] S. Kaniel, “On the initial value problem for an incompressible fluid with nonlinear viscosity”, J. Math. Mech., 19:8 (1970), 681–707 | MR | Zbl

[102] P. Kaplický, J. Málek, J. Stará, “$C^{1,\alpha}$-solutions to a class of nonlinear fluids in two dimensions – stationary Dirichlet problem”, Zap. nauch. sem. POMI, 259, 1999, 89–121 | MR | Zbl

[103] G. Karadzhov, M. Milman, “Extrapolation theory: New results and applications”, J. Approx. Theory, 133:1 (2005), 38–99 | DOI | MR | Zbl

[104] Y. Kato, “Variational inequalities of Bingham type in three dimensions”, Nagoya Math. J., 129 (1993), 53–95 | MR | Zbl

[105] A. V. Kazhikhov, V. V. Shelukhin, “The verification compactness method”, Aktualnye problemy sovremennoi matematiki, 2, Izd-vo Novosib. gos un-ta, 1996, 51–60

[106] R. A. Kerman, Studia Math., 76 (1983), 183–195 | MR | Zbl

[107] J. U. Kim, “On the initial-boundary value problem for a Bingham fluid in a three dimensional domain”, Trans. AMS, 304 (1987), 751–770 | MR | Zbl

[108] A. Kufner, S. Fuc̆ik, O. John, Function Spaces, Academia, Prague, 1977, 454 pp. | MR | Zbl

[109] O. A. Ladyzhenskaya, G. A. Seregin, “On semigroups generated by initial boundary value problems describing two-dimensional visco-plastic flows”, Nonlinear evolution equations, AMS Transl., Ser. 2, 164, 1995, 99–123 | MR | Zbl

[110] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, v. 2, Function spaces, Springer-Verlag, Berlin, Heidelberg, New York, 1979, 244 pp. | MR

[111] P.-L. Lions, “Existence globale de solutions pour les équations de Navier–Stokes compressible isentropiques”, C. R. Acad. Sci. Paris, 316 (1993), 1335–1340 | MR | Zbl

[112] P.-L. Lions, “Compacité des solutions des equations de Navier–Stokes compressible isentropiques”, Comp. Ren. Acad. Sci. Paris, Ser. I Math., 317:1 (1993), 115–120 | MR | Zbl

[113] P.-L. Lions, Mathematical Topics in Fluid Mechanics, v. 2, Compressible models, Clarendon Press, Oxford, 1998, 348 pp. | MR

[114] P.-L. Lions, “Sur les équations différentielles ordinaires et les équations de transport”, C. R. Acad. Sci., Paris, Sér. I Math., 326 (1998), 833–838 | MR | Zbl

[115] P.-L. Lions, “Bornes sur la densité pour les équations de Navier–Stokes compressibles isentropiques avec conditions aux limites de Dirichlet”, C. R. Acad. Sci. Paris. Ser. I Math., 328:8 (1999), 659–662 | MR | Zbl

[116] P.-L. Lions, “On some challenging problems in nonlinear partial differential equations”, Mathematics: frontiers and perspectives, eds. V. Arnold et al., Ainer. Malli Soc., Providence, RI, 2000, 121–135 | MR

[117] S. F. Lukomskii, “Convergence of Fourier series in Lorentz spaces”, East J. on Approx, 9:2 (2003), 229–238 | MR | Zbl

[118] J. Málek, J. Nečas, M. Rokyta, M. Růžička, Weak and Measure-Valued Solutions to Evolutionary PDEs, Chapman Hall, London, 1996, 318 pp. | MR | Zbl

[119] J. Málek, J. Nečas, M. Růžička, “On the non-Newtonian incompressible fluids”, Math. Models and Methods in Appl. Sci., 3:1 (1993), 35–63 | DOI | MR | Zbl

[120] J. Málek, M. Růžička, V. V. Shelukhin, “Hershel–Bulkley fluids: existence and regularity of steady flows”, Math. Models and Methods in Appl. Sciences, 15:12 (2005), 1845–1861 | DOI | MR | Zbl

[121] C. Marchioro, M. Pulvirenti, Mathematical theory of incompressible nonviscous fluids, Appl. Math. Sci., 96, Springer–Verlag, New York, 1994 | MR | Zbl

[122] A. Matsumura, T. Nishida, “The initial value problem for the equations of motion of viscous and heat-conductive gases”, J. Math. Kyoto Univ., 20:1 (1980), 67–104 | MR | Zbl

[123] S. Matus̆ů–Nec̆asová, A. Novotný, “Measure-valued solution for non-Newtonian compressible isothermal monopolar fluid”, Acta Appl. Math., 37:1–2 (1994), 109–128 | MR | Zbl

[124] M. Milman, Extrapolation and optimal decompositions with applications to analysis, Lecture Notes in Math., 1580, Springer-Verlag, Berlin, 1994, 162 pp. | MR | Zbl

[125] M. Milman, “Extrapolation spaces and a. e. convergence of Fourier series”, J. of Approx. Theory, 80:1 (1995), 10–24 | DOI | MR | Zbl

[126] J. Nec̆as, A. Novotný, M. v{S}hilhavý, “Global solution to the ideal compressible heat-conductive fluid”, Comment. Math. Univ. Carolinae, 30:3 (1989), 551–564 | MR | Zbl

[127] J. Nec̆as, A. Novotný, M. Šhilhavý, “Global solution to the compressible isothermal multipolar fluid”, J. Math. Anal. Appl., 162 (1990), 223–241 | MR

[128] J. Neustupa, “Measure-valued solutions of the Euler and Navier–Stokes equations for compressible barotropic fluids”, Math. Nachr., 163 (1993), 217–227 | DOI | MR | Zbl

[129] J. Neves, “On decompositions in generalized Lorentz–Zygmund spaces”, Boll. Unione Mat. Ital. Sez. B. Artic. Ric. Mat. (8), 4:1 (2001), 239–267 | MR | Zbl

[130] A. Novotný, “Viscous multipolar fluids – physical background and mathematical theory”, Fortschritte der Physik, 40:5 (1992), 445–517 | DOI | MR

[131] A. Novotný, Compactness of steady compressible isentropic Navier–Stokes equations via the decomposition method (the whole $\mathbb R^n$), Preprint of the Univ. of Toulon, 1995

[132] A. Novotný, “Some remarks to the compactness of steady compressible isentropic Navier–Stokes equations via the decomposition method”, Comment. Math. Univ. Carolinae, 37:2 (1996), 305–342 | MR | Zbl

[133] A. Novotný, M. Padula, “$L^p$-Approach to Steady flows of Viscous Compressible Fluids in Exterior Domains”, Arch. Rat. Mech. Anal., 126 (1994), 243–297 | DOI | MR | Zbl

[134] A. Novotný, I. Straskraba, Introduction to the mathematical theory of compressible flow, Oxford Lecture Series in Mathematics and its Applications, 27, Oxford University Press, Oxford, 2004 | MR | Zbl

[135] J. G. Oldroyd, Proc. Cambridge Plilos. Soc., 43:100 (1947) | MR

[136] R. O'Neil, C. R. Acad. Sci. Paris, Ser. A–B, 263 (1966), A463–A466 | MR

[137] M. Padula, “Existence of global solutions for 2-dimensional viscous compressible flows”, J. of Func. Anal., 69 (1986), 1–20 | DOI | MR | Zbl

[138] M. Padula, “Erratum to J. Func. Anal. 69(1986), 1–20”, J. Func. Anal., 76:1 (1988), 231 | DOI | MR

[139] M. Padula, “Erratum to J. Func. Anal. 69(1986), 1–20”, J. Func. Anal., 77 (1988), 232 | DOI | MR | Zbl

[140] P. I. Plotnikov, J. Sokolowski, “Stationary boundary value problems for compressible Navier–Stokes equations”, Handbook of Differential Equations: Stationary Partial Differential Equations, v. 6, ed. Michel Chipot, 2008, 313–410 | MR | Zbl

[141] W. Prager, Mécanique des solides isotropes au delà du domaine elastique, Paris, 1937

[142] K. R. Rajagopal, “Mechanics of non-Newtonian fluids”, Recent developments in theoretical fluid mechanics, Pitman Res. Notes Math. Ser., 291, eds. G. P. Galdi, J. Necas, Longman, Harlow, 1993, 129–162 | MR | Zbl

[143] V. Scheffer, “An inviscid flow with compact support in space-time”, J. Geom. Anal., 3:4 (1993), 343–401 | MR | Zbl

[144] G. A. Seregin, “Continuity for the strain velocity tensor in two-dimensional variational problems from the theory of the Bingham fluid”, Italian J. Pure Appl. Math., 2 (1997), 141–150 | MR | Zbl

[145] D. Serre, “Variations de grande amplitude pour la densité d'un fluide visqueux compressible”, Physica D, 48 (1991), 113–128 | DOI | MR | Zbl

[146] J. Serrin, “On the uniqueness of compressible fluid motion”, Arch. Rational Mech. Anal., 3:3 (1959), 271–288 | DOI | MR | Zbl

[147] V. V. Shelukhin, “Bingham viscoplastic as a limit of non-newtonian fluids”, J. of Math. Fluid Mechanics, 4 (2002), 109–127 | DOI | MR | Zbl

[148] A. Shnirelman, “On the nonuniqueness of weak solution of the Euler equation”, Comm. Pure Appl. Math., 50:12 (1997), 1261–1286 | 3.0.CO;2-6 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[149] F. N. Shwedov, “La rigidité de liquides”, Rapport Congr. Intern. Phys., Paris, 1 (1900), 478–486

[150] J. Simon, “Compact sets in the space $L_p(0,T;B)$”, Ann. Mat. Pura Appl., 146 (1987), 65–96 | DOI | MR | Zbl

[151] S. Smale, “Mathematical problems for the next century”, Math. Intelligencer, 20:2 (1998), 476–512 | DOI | MR

[152] D. N. Smyrnaios, J. A. Tsamopoulos, “Squeeze flow of Bingham plastics”, J. Non-Newtonian Fluid Mech., 100:13 (2001), 165–189 | DOI

[153] G. Talenti, “Best constant in Sobolev inequality”, Ann. Mat. Pura Appl., 110 (1976), 353–372 | DOI | MR | Zbl

[154] G. Talenti, “An embedding theorem”, Partial differential equations and the calculus of variations, Essays of Math. Anal. in honour of E. DeGiorgi, v. II, Birkhauser Verlag, Boston, 1989, 919–924 | MR

[155] N. S. Trudinger, “On imbeddings into Orlicz spaces and some applications”, J. Math. Mech., 17 (1967), 473–483 | MR | Zbl

[156] C. Truesdell, W. Noll, The nonlinear field theories of mechanics, Handbuch der Physik, III/3, Springer, Berlin, 1965 | MR

[157] M. Vishik, “Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type”, Ann. Sci. École Norm. Sup. (4), 32:6 (1999), 769–812 | MR | Zbl

[158] V. A. Weigant (V. A. Vaigant), “Unique solvability “in the large” of the initial boundary value problem for the two-dimensional Navier–Stokes equations of the viscous compressible fluid with Van-der-Vaals type state function and the bulk viscosity depending on density”, Siberian Advances in Math., 6:2 (1996), 106–150 | MR

[159] S. Yano, “An extrapolation theorem”, J. Math. Soc. Japan, 3:2 (1951), 296–305 | DOI | MR | Zbl

[160] V. I. Yudovich, “Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid”, Mathematical Research Letters, 2 (1995), 27–38 | MR | Zbl