Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2009_6_a32, author = {N. G. Pletnev}, title = {Filippov-Nambu $n$-algebras relevant to physics}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {272--311}, publisher = {mathdoc}, volume = {6}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a32/} }
N. G. Pletnev. Filippov-Nambu $n$-algebras relevant to physics. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 272-311. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a32/
[1] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, “Deformation Theory and Quantization. 1. Deformations of Symplectic Structures”, Annals Phys., 111 (1978), 61 ; “Deformation Theory and Quantization. 2. Physical Applications”, Annals Phys., 111 (1978), 111 ; “Quantum Mechanics as a Deformation of Classical Mechanics”, Lett. Math. Phys., 1 (1977), 521–530 | DOI | MR | Zbl | DOI | MR | DOI | MR
[2] E. Witten, “Noncommutative Geometry and String Field Theory”, Nucl. Phys. B, 268 (1986), 253 | DOI | MR
[3] M. B. Green, J. H. Schwarz, E. Witten, Superstring Theory, v. 1, Introduction, Univ. Pr., Cambridge, Uk, 1987 ; Superstring Theory, v. 2, Loop Amplitudes, Anomalies And Phenomenology | MR
[4] J. Polchinski, String theory, v. 1, An introduction to the bosonic string, Univ. Pr., Cambridge, UK, 1998 ; String theory, v. 2, Superstring theory and beyond | MR
[5] J. M. Maldacena, “The Large $N$ limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys., 2 (1998), 231–252 ; Int. J. Theor. Phys., 38 (1999), 1113–1133 ; O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, Y. Oz, “Large $N$ field theories, string theory and gravity”, Phys. Rept., 323 (2000), 183 | MR | Zbl | DOI | MR | Zbl | DOI | MR
[6] V. T. Filippov, “$n$-Lie algebras”, Sib. Mat. J., 26 (1985), 126–140 ; “On $n$-Lie algebra of jacobian”, Sib. Mat. J., 39 (1998), 660–669 | MR | Zbl | Zbl
[7] A. Basu, J. A. Harvey, “The M2-M5 brane system and a generalized Nahm's equation”, Nucl. Phys. B, 713 (2005), 136–150 | DOI | MR | Zbl
[8] D. S. Berman, “$M$-theory branes and their interactions”, Phys. Rept., 456 (2008), 89–126 | DOI | MR
[9] Y. Nambu, “Generalized Hamiltonian mechanics”, Phys. Rev. D, 7 (1973), 2405–2414 | DOI | MR
[10] J. Bagger, N. Lambert, “Modeling Multiple M2-branes”, Phys. Rev. D, 75 (2007), 045020 ; “Gauge symmetry and supersymmetry of multiple M2-branes”, Phys. Rev. D, 77 (2008), 065008 ; “Comments on multiple M2-branes”, JHEP, 2 (2008), 105 ; A. Gustavsson, “Algebraic structures on parallel M2-branes”, Nucl. Phys. B, 811 (2009), 66–76 | DOI | MR | DOI | MR | DOI | MR | DOI | MR | Zbl
[11] L. Takhtajan, “On Foundations of Generalized Nambu Mechanics”, Comm. Math. Phys., 160 (1994), 295–315 | DOI | MR | Zbl
[12] I. Vaisman, “A Survey on Nambu-Poisson Brackets”, Acta Math. Univ. Comenianae, 68:2 (1999), 213–241, arXiv: math/9901047 | MR | Zbl
[13] M. Van Raamsdonk, “Comments on the Bagger–Lambert theory and multiple M2-Branes”, JHEP, 5 (2008), 105 ; M. A. Bandres, A. E. Lipstein, J. H. Schwarz, “$\mathcal N=8$ Superconformal Chern–Simons Theories”, JHEP, 5 (2008), 025 ; G. Papadopoulos, “M2-branes, 3-Lie Algebras and Plucker relations”, JHEP, 5 (2008), 054 ; J. P. Gauntlett, J. B. Gutowski, Constraining Maximally Supersymmetric Membrane Actions, arXiv: ; G. Papadopoulos, “On the structure of $k$-Lie algebras”, Class. Quant. Grav., 25 (2008), 142002 0804.3078 | MR | Zbl | DOI | MR | DOI | MR | MR | DOI | MR | Zbl
[14] J. H. Schwarz, “Superconformal Chern–Simons theories”, JHEP, 11 (2004), 078 | DOI | MR
[15] J. Gomis, G. Milanesi, J. G. Russo, “Bagger–Lambert Theory for General Lie Algebras”, JHEP, 6 (2008), 075 ; S. Benvenuti, D. Rodriguez-Gomez, E. Tonni, H. Verlinde, “$\mathcal N=8$ superconformal gauge theories and M2 branes”, JHEP, 1 (2009), 078 | DOI | MR | DOI | MR
[16] J. Gomis, Diego Rodriguez-Gomez, M. Van Raamsdonk, H. Verlinde, “Supersymmetric Yang–Mills Theory From Lorentzian Three-Algebras”, JHEP, 8 (2008), 094 ; P. De Medeiros, J. M. Figueroa-O'Farrill, E. Mendez-Escobar, “Lorentzian Lie 3-algebras and their Bagger–Lambert moduli space”, JHEP, 7 (2008), 111 ; J. Gomis, G. Milanesi, J. G. Russo, Bagger–Lambert Theory for General Lie Algebras, arXiv: ; A. A. Tseytlin, E. Antonyan, “On 3d $\mathcal N=8$ Lorentzian BLG theory as a scaling limit of 3d superconformal $\mathcal N=6$ ABJM theory”, Phys. Rev. D, 79 (2009), 046002 0805.1012 | DOI | MR | DOI | MR | MR | DOI | MR
[17] A. A. Tseytlin, “On gauge theories for nonsemisimple groups”, Nucl. Phys. B, 450 (1995), 231–250 | DOI | MR | Zbl
[18] D. Gaiotto, E. Witten, Janus Configurations, Chern–Simons Couplings, And The theta-Angle in N=4 Super Yang–Mills Theory, arXiv: ; H. Fuji, S. Terashima, M. Yamazaki, “A New $\mathcal N=4$ Membrane Action via Orbifold”, Nucl. Phys. B, 810 (2009), 354–368 0804.2907 | DOI | MR | Zbl
[19] O. Aharony, O. Bergman, D. L. Jafferis, J. Maldacena, “$\mathcal N=6$ superconformal Chern–Simons-matter theories, M2-branes and their gravity duals”, JHEP, 10 (2008), 091 | DOI | MR
[20] J. Bagger, N. Lambert, “Three-Algebras and $\mathcal N=6$ Chern–Simons Gauge Theories”, Phys. Rev. D, 79 (2009), 025002 | DOI | MR
[21] M. Schnabl, Y. Tachikawa, Classification of N=6 superconformal theories of ABJM type, arXiv: ; B. E. W. Nilsson, J. Palmkvist, “Superconformal M2-branes and generalized Jordan triple systems”, Class. Quant. Grav., 26 (2009), 075007 ; P. de Medeiros, J. Figueroa-O'Farrill, E. Méndez-Escobar, P. Ritter, On the Lie-algebraic origin of metric 3-algebras, arXiv: ; J. Palmkvist, Three-algebras, triple systems and 3-graded Lie superalgebras, arXiv: ; N. Akerblom, C. Säemann, M. Wolf, Marginal Deformations and 3-Algebra Structures, arXiv: 0807.11020809.10860905.24680906.1705 | DOI | MR | Zbl
[22] S. Mukhi, C. Papageorgakis, “M2 to D2”, JHEP, 5 (2008), 085 | DOI | MR
[23] I. L. Buchbinder, E. A. Ivanov, O. Lechtenfeld, N. G. Pletnev, I. B. Samsonov, B. M. Zupnik, “ABJM models in $\mathcal N=3$ harmonic superspace”, JHEP, 3 (2009), 096 | DOI | MR
[24] A. Mauri, A. C. Petkou, “An $\mathcal N=1$ Superfield Action for M2 branes”, Phys. Lett. B, 666 (2008), 527–532 ; M. Benna, I. Klebanov, T. Klose, M. Smedback, “Superconformal Chern–Simons Theories and $AdS(4)/CFT(3)$ Correspondence”, JHEP, 9 (2008), 072 ; S. A. Cherkis, C. Saemann, “Multiple M2-branes and Generalized 3-Lie algebras”, Phys. Rev. D, 78 (2008), 066019 ; “On Superspace Actions for Multiple M2-Branes, Metric 3-Algebras and their Classification”, Phys. Rev. D, 79 (2009), 086002 | DOI | MR | DOI | MR | DOI | MR | DOI | MR
[25] A. S. Galperin, E. A. Ivanov, V. I. Ogievetsky, E. S. Sokatchev, Harmonic Superspace, Cambridge University Press, 2001, 306 pp. | MR | Zbl
[26] W. Nahm, Phys. Lett. B, 90 (1980), 413 | DOI
[27] V. Arnol'd, Mathematical Methods of Classical Mechanics, GTM, 60, Springer-Verlag, New York, Heidelberg, Berlin, 1978 | MR | Zbl
[28] T. Curtright, C. K. Zachos, “Classical and quantum Nambu mechanics”, Phys. Rev. D, 68 (2003), 085001 | DOI
[29] L. Landau and E. Lifshitz, Mechanics, Pergamon Press, 1976 | MR
[30] D. Minic, H. C. Tze, “Nambu quantum mechanics: A Nonlinear generalization of geometric quantum mechanics”, Phys. Lett. B, 536 (2002), 305–314 | DOI | MR | Zbl
[31] M. Axenides, E. Floratos, “Nambu-Lie 3-Algebras on Fuzzy 3-Manifolds”, JHEP, 2 (2009), 039 | DOI | MR
[32] V. Arnold, Annales de l'Inst. Fourier, 16 (1966), 319–361 ; V. I. Arnold, B. A. Khesin, Topological Methods in Hydrodynamics, Springer-Verlag, New York, Heidelberg, Berlin, 1998 | MR | MR
[33] E. H. Fradkin, Field theories of condensed matter systems, Frontiers in Physics, 82, Addison-Wesley, Redwood City, USA, 1991, 350 pp. ; L. Susskind, The Quantum Hall fluid and non-commutative Chern–Simons theory, arXiv: hep-th/0101029 | MR | Zbl
[34] H. Awata, M. Li, D. Minic, T. Yoneya, “On the quantization of Nambu brackets”, JHEP, 2 (2001), 013 ; Y. Kawamura, “Dynamical theory of generalized matrices”, Prog. Theor. Phys., 114 (2005), 669–693 | DOI | MR | DOI | MR | Zbl
[35] G. Dito, M. Flato, D. Sternheimer, L. Takhtajan, “Deformation quantization and Nambu mechanics”, Commun. Math. Phys., 183 (1997), 1–22 | DOI | MR | Zbl
[36] R. Chatterjee, L. Takhtajan, “Aspects of classical and quantum Nambu mechanics”, Lett. Math. Phys., 37 (1996), 475–482 | DOI | MR | Zbl
[37] L. Brink, P. Di Vecchia, P. S. Howe, “A Locally Supersymmetric and Reparametrization Invariant Action for the Spinning String”, Phys. Lett. B, 65 (1976), 471–474 ; P. S. Howe, R. W. Tucker, “A Locally Supersymmetric and Reparametrization Invariant Action for a Spinning Membrane”, J. Phys. A, 10 (1977), L155–L158 | DOI | DOI
[38] R. C. Myers, “Dielectric branes”, JHEP, 12 (1999), 022 | DOI | MR | Zbl
[39] P. M. Ho, Y. Matsuo, “M5 from M2”, JHEP, 6 (2008), 105 | MR
[40] P. Pasti, I. Samsonov, D. Sorokin, M. Tonin, BLG-motivated Lagrangian formulation for the chiral two-form gauge field in D=6 and M5-branes, arXiv: hep-th/0907.4596
[41] E. Bergshoeff, E. Sezgin, Y. Tanii and P. K. Townsend, “Super $p$-branes as gauge theories of volume preserving diffeomorphism”, Annals Phys., 199 (1990), 340 pp. | DOI | MR | Zbl
[42] E. Bergshoeff, E. Sezgin, P. K. Townsend, “Properties of the Eleven-Dimensional Super Membrane Theory”, Annals Phys., 185 (1988), 330 ; M. J. Duff, “Classical And Quantum Supermembranes”, Class. Quant. Grav., 6 (1989), 1577–1598 ; Supermembranes, arXiv: hep-th/9611203 | DOI | MR | DOI | MR
[43] K. Lee, J. H. Park, “Three-algebra for supermembrane and two-algebra for superstring”, JHEP, 4 (2009), 012 | DOI | MR | Zbl
[44] J. Hoppe, Quantum Theory Of A Massless Relativistic Surface And A Two Dimensional Bound State Problem, PhD thesis, Massachuses Institute of Technology, 1982 available at ; B. de Wit, J. Hoppe and H. Nicolai, “On the quantum mechanics of supermembranes”, Nucl. Phys. B, 305 (1988), 545 pp. http://www.aei.mpg.de/jh-cgi-bin/viewit.cgi | MR
[45] I. A. Bandos, P. K. Townsend, “Light-cone M5 and multiple M2-branes”, Class. Quant. Grav., 25 (2008), 245003 ; “SDiff Gauge Theory and the M2 Condensate”, JHEP, 2 (2009), 013 ; I. A. Bandos, “NB BLG model in $\mathcal N=8$ superfields”, Phys. Lett. B, 669 (2008), 193–195 | DOI | MR | Zbl | MR | DOI | MR
[46] S. Coleman and J. Mandula, “All Possible Symmetries Of The $S$ Matrix”, Phys. Rev. D, 159 (1967), 1251 ; R. Haag, J. Lopuszanski and M. Sohnius, “All Possible Generators of Supersymmetries of the $S$ Matrix”, Nucl. Phys. B, 88 (1975), 257 | DOI | Zbl | DOI | MR
[47] M. A. Vasiliev, “Higher spin gauge theories: Star product and AdS space”, The many faces of the superworld, Contributed article to Golfand's Memorial Volume, ed. M. Shifman, World Scientific, 533–610, arXiv: hep-th/9910096 | MR | Zbl
[48] M. P. Blencowe, “A Consistent Interacting Massless Higher Spin Field Theory In $D=(2+1)$”, Class. Quant. Grav., 6 (1989), 443 ; E. S. Fradkin, V. Ya. Linetsky, “A Superconformal Theory Of Massless Higher Spin Fields In $D=(2+1)$”, Annals Phys., 198 (1990), 293–320 | DOI | MR | DOI | MR | Zbl
[49] E. Bergshoeff, M. P. Blencowe, K. S. Stelle, “Area Preserving Diffeomorphisms And Higher Spin Algebra”, Commun. Math. Phys., 128 (1990), 213 | DOI | MR | Zbl
[50] E. Sezgin, E. Sokatchev, “Chern–Simons Theories Of Symplectic Super-diffeomorphisms”, Phys. Lett. B, 227 (1989), 103–110 | MR
[51] E. A. Bergshoeff, G. W. Gibbons, P. K. Townsend, “Open M5-branes”, Phys. Rev. Lett., 97 (2006), 231601 | DOI | MR
[52] G. Bonelli, A. Tanzini, M. Zabzine, “Topological branes, $p$-algebras and generalized Nahm equations”, Phys. Lett. B, 672 (2009), 390–395 | DOI | MR