On the length of the set of extreme points for self-similar sets in $\mathbb R^2$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 522-525

Voir la notice de l'article provenant de la source Math-Net.Ru

We proof that the set of extreme points of the convex hull of any self-similar set in $\mathbb R^2$ has zero $1$-dimensional Lebesgue measure.
Keywords: self-similar sets, convex hull, extreme points, Hausdorff measure.
Mots-clés : fractal
@article{SEMR_2009_6_a30,
     author = {A. V. Tetenov},
     title = {On the length of the set of extreme points for self-similar sets in $\mathbb R^2$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {522--525},
     publisher = {mathdoc},
     volume = {6},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a30/}
}
TY  - JOUR
AU  - A. V. Tetenov
TI  - On the length of the set of extreme points for self-similar sets in $\mathbb R^2$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2009
SP  - 522
EP  - 525
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a30/
LA  - en
ID  - SEMR_2009_6_a30
ER  - 
%0 Journal Article
%A A. V. Tetenov
%T On the length of the set of extreme points for self-similar sets in $\mathbb R^2$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2009
%P 522-525
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a30/
%G en
%F SEMR_2009_6_a30
A. V. Tetenov. On the length of the set of extreme points for self-similar sets in $\mathbb R^2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 522-525. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a30/