On the length of the set of extreme points for self-similar sets in $\mathbb R^2$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 522-525.

Voir la notice de l'article provenant de la source Math-Net.Ru

We proof that the set of extreme points of the convex hull of any self-similar set in $\mathbb R^2$ has zero $1$-dimensional Lebesgue measure.
Keywords: self-similar sets, convex hull, extreme points, Hausdorff measure.
Mots-clés : fractal
@article{SEMR_2009_6_a30,
     author = {A. V. Tetenov},
     title = {On the length of the set of extreme points for self-similar sets in $\mathbb R^2$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {522--525},
     publisher = {mathdoc},
     volume = {6},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a30/}
}
TY  - JOUR
AU  - A. V. Tetenov
TI  - On the length of the set of extreme points for self-similar sets in $\mathbb R^2$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2009
SP  - 522
EP  - 525
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a30/
LA  - en
ID  - SEMR_2009_6_a30
ER  - 
%0 Journal Article
%A A. V. Tetenov
%T On the length of the set of extreme points for self-similar sets in $\mathbb R^2$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2009
%P 522-525
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a30/
%G en
%F SEMR_2009_6_a30
A. V. Tetenov. On the length of the set of extreme points for self-similar sets in $\mathbb R^2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 522-525. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a30/

[1] Ferrari M., “The convex hull of self-similar sets in $\mathbb R^3$”, Fractals, 15:2 (2007), 1–10 | DOI | MR

[2] Panzone P. A., “A note on the convex hull of self-similar sets”, Proceedings of the Second “Dr. Antonio A. R. Monteiro” Congress on Mathematics, Inst. de Matematica de Bahia Blanca, 1993, 57–64 | MR

[3] R. Strichartz and Y. Wang, “Geometry of self-afiine tiles I”, Indiana Univ. Math. J., 48 (1999), 1–24 | MR

[4] Tetenov A. V., “Khausdorfova razmernost mnozhestva krainikh tochek samopodobnykh mnozhestv na ploskosti”, Dinamika sploshnoi sredy, Sb. nauch. tr., 120, Sib. otd. RAN, In-t gidrodinamiki., 2002, 53–59 | MR

[5] Tetenov A. V., Davydkin I. B., Hausdorff dimension of the set of extreme points of a self-similar set, arXiv: math/0202215

[6] Tetenov A. V., Davydkin I. B., “O vypuklykh obolochkakh samopodobnykh mnozhestv”, Vestnik novosibirskogo gosudarstvennogo universiteta Seriya "Matematika, mekhanika, informatika", 2 (2005), 21–27

[7] Winter S., “Curvature measures and fractals”, Diss. Math., 453 (2008), 66 pp. | MR | Zbl

[8] Zahle M., Workshop on Fractals and Tilings 2009 (July 6–10, Strobl, Austria)