Virtual $3$-manifolds
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 518-521.

Voir la notice de l'article provenant de la source Math-Net.Ru

We generalize the class if all compact $3$-manifolds to a class of new objects called virtual $3$-manifolds. Each virtual $3$-manifold determines a $3$-manifold with singularities of the type $\mathrm{Con}(RP^2)$ and may be presented by a triangulation as well as by a special spine. Many properties and invariants of $3$-manifolds can be extended to the virtual ones. We restrict ourselves to mentioning Turaev–Viro invariants and two-sheeted branched coverings of virtual $3$-manifolds.
Keywords: $3$-manifold, special spine, virtual $3$-manifold.
@article{SEMR_2009_6_a29,
     author = {S. V. Matveev},
     title = {Virtual $3$-manifolds},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {518--521},
     publisher = {mathdoc},
     volume = {6},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a29/}
}
TY  - JOUR
AU  - S. V. Matveev
TI  - Virtual $3$-manifolds
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2009
SP  - 518
EP  - 521
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a29/
LA  - en
ID  - SEMR_2009_6_a29
ER  - 
%0 Journal Article
%A S. V. Matveev
%T Virtual $3$-manifolds
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2009
%P 518-521
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a29/
%G en
%F SEMR_2009_6_a29
S. V. Matveev. Virtual $3$-manifolds. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 518-521. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a29/

[1] Math. USSR Izv., 31:2 (1988), 423–434 | DOI | MR | Zbl

[2] S. Matveev, Algorithmic topology and classification of 3-manifolds, Springer ACM-monographs, 9, Second edition, Berlin, 2007, 492 pp. | MR | Zbl

[3] Proc. Steklov Inst. Math., 252 (2006), 104–121 | DOI | MR

[4] V. G. Turaev, O. Ya. Viro, “State sum invariants of $3$-manifolds and quantum $6j$-symbols”, Topology, 31:4 (1992), 865–902 | DOI | MR | Zbl