Virtual $3$-manifolds
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 518-521
Cet article a éte moissonné depuis la source Math-Net.Ru
We generalize the class if all compact $3$-manifolds to a class of new objects called virtual $3$-manifolds. Each virtual $3$-manifold determines a $3$-manifold with singularities of the type $\mathrm{Con}(RP^2)$ and may be presented by a triangulation as well as by a special spine. Many properties and invariants of $3$-manifolds can be extended to the virtual ones. We restrict ourselves to mentioning Turaev–Viro invariants and two-sheeted branched coverings of virtual $3$-manifolds.
Keywords:
$3$-manifold, special spine, virtual $3$-manifold.
@article{SEMR_2009_6_a29,
author = {S. V. Matveev},
title = {Virtual $3$-manifolds},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {518--521},
year = {2009},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a29/}
}
S. V. Matveev. Virtual $3$-manifolds. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 518-521. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a29/
[1] Math. USSR Izv., 31:2 (1988), 423–434 | DOI | MR | Zbl
[2] S. Matveev, Algorithmic topology and classification of 3-manifolds, Springer ACM-monographs, 9, Second edition, Berlin, 2007, 492 pp. | MR | Zbl
[3] Proc. Steklov Inst. Math., 252 (2006), 104–121 | DOI | MR
[4] V. G. Turaev, O. Ya. Viro, “State sum invariants of $3$-manifolds and quantum $6j$-symbols”, Topology, 31:4 (1992), 865–902 | DOI | MR | Zbl