A note on $\sigma(*)$-rings and their extensions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 505-509
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $R$ be an associative ring with identity $1\neq0$, and $\sigma$ an endomorphism of $R$. We recall $\sigma(*)$ property on $R$ (i.e. $a\sigma(a)\in P(R)$ implies $a\in P(R)$ for $a\in R$, where $P(R)$ is the prime radical of $R$). Also recall that a ring $R$ is said to be $2$-primal if and only if the prime radical $P(R)$ and nil radical are same, i.e. if the prime radical is a completely semiprime ideal. It can be seen that a $\sigma(*)$ ring is a $2$-primal ring. Let $R$ be a ring and $\sigma$ an automorphism of $R$. Then we know that $\sigma$ can be extended to an automorphism of the skew polynomial ring $R[x;\sigma]$. In this paper we show that if $R$ is a Noetherian ring and $\sigma$ is an automorphism of $R$ such that $R$ is a $\sigma(*)$-ring, then $R[x;\sigma]$ is also a $\sigma(*)$-ring.
Keywords:
minimal prime, prime radical, $\sigma(*)$-ring.
Mots-clés : automorphism
Mots-clés : automorphism
@article{SEMR_2009_6_a23,
author = {V. K. Bhat and Neetu Kumari},
title = {A~note on $\sigma(*)$-rings and their extensions},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {505--509},
year = {2009},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a23/}
}
V. K. Bhat; Neetu Kumari. A note on $\sigma(*)$-rings and their extensions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 505-509. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a23/
[1] V. K. Bhat, “Associated prime ideals of skew polynomial rings”, Beiträge Algebra Geom., 49:1 (2008), 277–283 | MR | Zbl
[2] K. R. Goodearl and R. B. Warfield Jr., An introduction to non-commutative Noetherian rings, Second Edition, Cambridge Uni. Press, 2004 | MR | Zbl
[3] J. Krempa, “Some examples of reduced rings”, Algebra Colloq., 3:4 (1996), 289–300 | MR | Zbl
[4] T. K. Kwak, “Prime radicals of skew-polynomial rings”, Int. J. Math. Sci., 2:2 (2003), 219–227 | MR | Zbl