Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2009_6_a22, author = {A. V. Kostochka and C. Stocker}, title = {A~new bound on the domination number of connected cubic graphs}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {465--504}, publisher = {mathdoc}, volume = {6}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a22/} }
TY - JOUR AU - A. V. Kostochka AU - C. Stocker TI - A~new bound on the domination number of connected cubic graphs JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2009 SP - 465 EP - 504 VL - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a22/ LA - en ID - SEMR_2009_6_a22 ER -
A. V. Kostochka; C. Stocker. A~new bound on the domination number of connected cubic graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 465-504. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a22/
[1] M. Blank, “An estimate of the external stability of a graph without pendant vertices”, Prikl. Math. i Programmirovanie, 10 (1973), 3–11 | MR
[2] M. Cropper, D. Greenwell, A. J. W. Hilton, and A. V. Kostochka, “The domination number of cubic hamiltonian graphs”, AKCE J. Graphs Combin., 2 (2005), 137–144 | MR | Zbl
[3] K. Kawarabayashi, M. Plummer, and A. Saito, “Domination in a graph with a $2$-factor”, J. of Graph Theory, 52 (2006), 1–6 | DOI | MR | Zbl
[4] A. K. Kelmans, Counterexamples to the Cubic Graph Domination Conjecture, submitted
[5] A. V. Kostochka and B. Y. Stodolsky, “On domination in connected cubic graphs”, Discrete Math., 304 (2005), 45–50 | DOI | MR | Zbl
[6] A. V. Kostochka and B. Y. Stodolsky, “An upper bound on domination number of $n$-vertex connected cubic graphs”, Discrete Math. (to appear) | MR
[7] C. Löwenstein and D. Rautenbach, “Domination in graphs of minimum degree at least two and large girth”, Graphs Combin., 24 (2008), 37–46 | DOI | MR | Zbl
[8] O. Ore, Theory of Graphs, Amer. Math. Soc. Coll. Publ., 38, 1962 | Zbl
[9] M. Plummer, personal communication
[10] B. Reed, “Paths, stars, and the number three”, Combin. Probab. Comput., 5 (1996), 277–295 | DOI | MR | Zbl
[11] B. Y. Stodolsky, On domination in $2$-connected cubic graphs, submitted