Computer system of modules integration for automatic construction and numerical analysis of molecular genetic systems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 440-456.

Voir la notice de l'article provenant de la source Math-Net.Ru

At the turn of the 20th and 21th centuries there was such meaningful scientific progress in molecular biology as mapping of the human genome. This event is a start of the new period in development of the life science often called as post genome era. At the same time there were also qualitative changes in computer technology that multiply increase possibilities of computer's technology using for processing and storage of the huge information data. The intensive increased volume of experimental data generating by methods of the modern system biology stimulates a development of computer data bases for information processing and storage from literature and also stimulates a development of software for analysis and studying of complex models from these data base. The existing variety of computer tools solving the system biology tasks and modeling of the molecular genetic systems (MGS) in particular allows us to use the different approaches for solving of the assigned tasks. At the same time there is necessary to face the challenges under selection of the definite software. There are specificity of the model formats in this software and doubling of his functionality in other computer systems. In the judgment of specialists the decision of the compatibility problems of different specialized systems and development of free and open formats on data presentation are key in the achievement of purpose to develop the integrative systems supporting technologies of complex model analysis. We have represented the integrative computer system that oriented on construction and numerical analysis of models describing dynamics of the MGS functioning in pro- and eukaryotes. The system consists from the next program modules: module MGSgenerator and module STEP+. Module MGSgenerator is an intermediate unit in generation process of the mathematical models on basis of the gene networks reconstructed in GeneNet. Module STEP+ allows us to realize the numerical analysis of the model representing by autonomous system of ordinary differential equations. The mathematical model converts from our specialized format SBML in input STEP+ format by MGSgenerator module. We have tested the integrative computer system on basis of the MGS model describing intracellular auxin metabolism in a plant cell.
Keywords: integrative computer system, gene network, molecular genetic systems, intracellular auxin metabolism in a plant cell.
@article{SEMR_2009_6_a20,
     author = {I. R. Akberdin and F. V. Kazantsev and V. A. Likhoshvai and S. I. Fadeev and I. A. Gainova and V. K. Korolev and A. E. Medvedev},
     title = {Computer system of modules integration for automatic construction and numerical analysis of molecular genetic systems},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {440--456},
     publisher = {mathdoc},
     volume = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a20/}
}
TY  - JOUR
AU  - I. R. Akberdin
AU  - F. V. Kazantsev
AU  - V. A. Likhoshvai
AU  - S. I. Fadeev
AU  - I. A. Gainova
AU  - V. K. Korolev
AU  - A. E. Medvedev
TI  - Computer system of modules integration for automatic construction and numerical analysis of molecular genetic systems
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2009
SP  - 440
EP  - 456
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a20/
LA  - ru
ID  - SEMR_2009_6_a20
ER  - 
%0 Journal Article
%A I. R. Akberdin
%A F. V. Kazantsev
%A V. A. Likhoshvai
%A S. I. Fadeev
%A I. A. Gainova
%A V. K. Korolev
%A A. E. Medvedev
%T Computer system of modules integration for automatic construction and numerical analysis of molecular genetic systems
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2009
%P 440-456
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a20/
%G ru
%F SEMR_2009_6_a20
I. R. Akberdin; F. V. Kazantsev; V. A. Likhoshvai; S. I. Fadeev; I. A. Gainova; V. K. Korolev; A. E. Medvedev. Computer system of modules integration for automatic construction and numerical analysis of molecular genetic systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 440-456. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a20/

[1] S. A. Kauffman, The Origins of Order: Self-Organization and Selection in Evolution, Oxford Univ. Press, N.Y., 1993

[2] R. Thomas, D. Thieffry, M. Kaufman, “Dynamical behaviour of biological regulatory networks-I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state”, Bull. Math. Biol., 57:2 (1995), 247–276 | Zbl

[3] P. Smolen, D. A. Baxter, J. H. Byrne, “Modeling transcriptional control in gene networks – methods, recent results, and future directions”, Bull. Math. Biol., 62:2 (2000), 247–292 | DOI

[4] V. A. Likhoshvai, S. I. Fadeev, G. V. Demidenko, Yu. G. Matushkin, “Modelirovanie mnogostadiinogo sinteza veschestva bez vetvleniya uravneniem s zapazdyvayuschim argumentom”, Sibirskii zhurnal industrialnoi matematiki, 7:1 (2004), 73–94 | MR | Zbl

[5] V. A. Likhoshvai, S. I. Fadeev, Yu. G. Matushkin, “The Global Operation Modes Of Gene Networks Determined By The Structure Of Negative Feedbacks”, Bioinformatics of genome regulation and structure, eds. N. Kolchanov and R. Hofestaedt, Kluwer Academic Publishers, Boston, Dordrecht, London, 2004, 319–330

[6] T. E. Turner, S. Schnell, K. Burrage, “Stochastic approaches for modelling in vivo reactions”, Comput. Biol. Chem., 28:3 (2004), 165–178 | DOI | Zbl

[7] F. V. Kazantsev, I. R. Akberdin, K. D. Bezmaternykh, V. A. Likhoshvai, “Sistema avtomatizirovannoi generatsii matematicheskikh modelei gennykh setei”, Informatsionnyi Vestnik VOGiS, 13:1 (2009), 163–170

[8] E. A. Ananko, N. L. Podkolodny, I. L. Stepanenko, O. A. Podkolodnaya, D. A. Rasskazov, D. S. Miginsky, V. A. Likhoshvai, A. V. Ratushny, N. N. Podkolodnaya and N. A. Kolchanov, “GeneNet in 2005”, Nucleic Acids Res., 33 (2005), 425–427 | DOI

[9] S. I. Fadeev, V. K. Korolev, I. A. Gainova, A. E. Medvedev, “The package Step+ for numerical study of autonomous systems arising when modeling dynamics of genetic-molecular systems”, Proc. of the 6th Intern. Conf. on Bioinformatics of Genome Regulation and Structure. V. 2, 2006, 118–120

[10] I. R. Akberdin, N. A. Omelyanchuk, S. I. Fadeev, V. M. Efimov, I. A. Gainova, V. A. Likhoshvai, “Mathematical model of auxin metabolism in shoots of arabidopsis thaliana $L$”, Proc. of the 6th Intern. Conf. on Bioinformatics of Genome Regulation and Structure. V. 2, 2008, 23

[11] I. R. Akberdin, F. V. Kazantsev, N. A. Omelyanchuk, V. A. Likhoshvai, “Matematicheskoe modelirovanie metabolizma auksina v kletke meristemy pobega rasteniya”, Informatsionnyi Vestnik VOGiS, 13:1 (2009), 170–176

[12] V. A. Likhoshvai, Yu. G. Matushkin, A. V. Ratushnyi, E. A. Ananko, E. V. Ignateva, O. V. Podkolodnaya, “Obobschennyi khimiko-kineticheskii metod modelirovaniya gennykh setei”, Molekulyarnaya biologiya, 35:6 (2001), 1072–1079

[13] V. Likhoshvai and A. Ratushny, “Generalized Hill function method for modeling molecular processes”, Journal of Bioinformatics and Comp. Biology, 5:2 (2007), 521–531 | DOI | MR

[14] V. A. Likhoshvai, F. V. Kazantsev, I. R. Akberdin, et al., A computer system for reconstruction, calculation and analysis of mathematical models of molecular genetic system (MGSmodeller), The certificate No 2008612820, 2008

[15] G. W. Gear, “The automatic integration of ordinary differential equations”, Comm. ACM.V., 14:3 (1971), 176–179 | DOI | MR | Zbl

[16] S. I. Fadeev, S. A. Pokrovskaya, A. Yu. Berezin, I. A. Gainova, Paket programm STEP dlya chislennogo issledovaniya sistem nelineinykh uravnenii i avtonomnykh sistem obschego vida. Opisanie raboty paketa STEP na primerakh zadach iz uchebnogo kursa “Inzhenernaya khimiya kataliticheskikh protsessov”, Izd-vo NGU, Novosibirsk, 1998

[17] S. I. Fadeev, V. V. Kogai, “Using parameter continuation based on the multiple shooting method for numerical research of nonlinear boundary value problems”, International Journal of Pure and Applied Mathematics, 14:4 (2004), 467–498 | MR | Zbl

[18] S. K. Godunov, Obyknovennye differentsialnye uravneniya s postoyannymi koeffitsientami, Izd-vo NGU, Novosibirsk, 1994 | MR | Zbl

[19] A. W. Woodward, B. Bartel, “Auxin: regulation, action, and interaction”, Ann Bot (Lond), 95:5 (2005), 707–735 | DOI

[20] E. Sztein, J. D. Cohen and T. J. Cooke, “Evolutionary patterns in the auxin metabolism of green plants”, Int. J. Plant Sci., 161:6 (2000), 849–859 | DOI

[21] R. S. Bandurski, A. Schulze, “Concentration of Indole-3-acetic Acid and Its Derivatives in Plants”, Plant Physiol., 60:2 (1977), 211–213 | DOI

[22] Y. S. Momonoki, A. Schulze, R. S. Bandurski, “Effect of Deseeding on the Indole-3-acetic Acid Content of Shoots and Roots of Zea mays Seedlings”, Plant Physiol., 72:2 (1983), 526–529 | DOI

[23] R. T. Davies, D. H. Goetz, J. Lasswell, M. N. Anderson, B. Bartel, “IAR3 encodes an auxin conjugate hydrolase from Arabidopsis”, Plant Cell, 11:3 (1999), 365–376 | DOI

[24] J. Normanly, B. Bartel, “Redundancy as a way of life – IAA metabolism”, Curr Opin Plant Biol., 2:3 (1999), 207–213 | DOI

[25] M. D. Mikkelsen, C. H. Hansen, U. Wittstock, B. A. Halkier, “Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid”, J. Biol. Chem., 275:43 (2000), 33712–33717 | DOI

[26] S. Park, A. Walz, Y. S. Momonoki, J. Ludwig-Muller, J. P. Slovin, J. D. Cohen, Proc. of the American Society of Plant Biologists Conference, (2003, Honolulu, HI) http://abstracts.aspb.org/pb2003/public/P46/0961.html