Sequential synthesis of time optimal control by a~linear system with disturbance
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 385-439.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method of sequential synthesis of time optimal control by a linear system with unknown disturbance is con-sidered. A simple way of forming in real time a piecewise con-stant finite control moving a linear system from an initial state to the origin is proposed,the approximate solution to speed problem being provided. The relations are obtained that transform sequence of the finite controls to time optimal control. The evaluations consist in solving repeatedly the system of linear algebraic equations and integrating the mat-rix differential equation on the displacement intervals of the control switching times and that of the final control time. The simple and constructive conditions are obtained for: occurrence of discontinuous mode; moving the representative point along the switching manifolds; transformation of the optimal control structure in moving the phase trajectory of the system with uncontrollable disturbance.The method is evaluated in terms of its computational burden and the procedure of setting initial approximation that substantially decreases it is examined. The computational algorithm is given. Sequence of the controls is proved to converge to optimal control.
Keywords: optimal control, speed, duration of computation, finite control, linear system, disturbance, phase trajectory,switching time, adjoint system, iteration.
Mots-clés : variation
@article{SEMR_2009_6_a19,
     author = {V. M. Aleksandrov},
     title = {Sequential synthesis of time optimal control by a~linear system with disturbance},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {385--439},
     publisher = {mathdoc},
     volume = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a19/}
}
TY  - JOUR
AU  - V. M. Aleksandrov
TI  - Sequential synthesis of time optimal control by a~linear system with disturbance
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2009
SP  - 385
EP  - 439
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a19/
LA  - ru
ID  - SEMR_2009_6_a19
ER  - 
%0 Journal Article
%A V. M. Aleksandrov
%T Sequential synthesis of time optimal control by a~linear system with disturbance
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2009
%P 385-439
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a19/
%G ru
%F SEMR_2009_6_a19
V. M. Aleksandrov. Sequential synthesis of time optimal control by a~linear system with disturbance. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 385-439. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a19/

[1] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Nauka, Moskva, 1976 | Zbl

[2] V. M. Aleksandrov, “Posledovatelnyi sintez optimalnogo po bystrodeistviyu upravleniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 39:9 (1999), 1464–1478 | MR | Zbl

[3] V. M. Aleksandrov, “Skhodimost metoda posledovatelnogo sinteza optimalnogo po bystrodeistviyu upravleniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 39:10 (1999), 1650–1661 | MR | Zbl

[4] V. M. Aleksandrov, “Iteratsionnyi metod vychisleniya v realnom vremeni optimalnogo po bystrodeistviyu upravleniya”, Sibirskii zhurnal vychislitelnoi matematiki, 10:1 (2007), 1–28 | Zbl

[5] V. M. Aleksandrov, “Posledovatelnyi sintez optimalnogo po bystrodeistviyu upravleniya v realnom vremeni”, Avtomatika i telemekhanika, 8 (2008), 3–24 | MR | Zbl

[6] V. M. Aleksandrov, “Posledovatelnyi sintez optimalnogo po bystrodeistviyu upravleniya lineinymi sistemami s vozmuscheniyami”, Sibirskii zhurnal vychislitelnoi matematiki, 11:3 (2008), 251–270 | Zbl

[7] R. Gabasov, F. M. Kirillova, O. I. Kostyukova, “Optimizatsiya lineinoi sistemy upravleniya v rezhime realnogo vremeni”, Izvestiya RAN. Tekhnicheskaya kibernetika, 1992, no. 4, 3–19 | MR | Zbl

[8] N. V. Balashevich, R. Gabasov, F. M. Kirillova, “Chislennye metody programmnoi i pozitsionnoi optimizatsii lineinykh sistem upravleniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 40:6 (2000), 838–859 | MR | Zbl

[9] R. Gabasov, F. M. Kirillova, “Optimalnoe upravlenie v rezhime realnogo vremeni”, Vtoraya mezhdunarodnaya konferentsiya po problemam upravleniya, Plenarnye doklady (17–19 iyunya 2003 g.), IPU im. V. A. Trapeznikova RAN, M., 2003, 20–47

[10] R. P. Fedorenko, Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, Moskva, 1978 | MR | Zbl

[11] V. V. Dikusar, A. A. Milyutin, Kachestvennye i chislennye metody v printsipe maksimuma, Nauka, Moskva, 1989 | MR | Zbl

[12] V. A. Srochko, Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, Moskva, 2000

[13] N. E. Kirin, “K resheniyu obschei zadachi lineinogo bystrodeistviya”, Avtomatika i telemekhanika, 1 (1964), 16–22 | MR

[14] B. N. Pshenichnyi, L. A. Sobolenko, “Uskorennyi metod resheniya zadachi lineinogo bystrodeistviya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 8:6 (1968), 1343–1351

[15] A. Ya. Dubovitskii, V. A. Rubtsov, “Lineinye bystrodeistviya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 10:1 (1970), 216–223

[16] E. Dyurkovich, “Chislennyi metod resheniya lineinykh zadach bystrodeistviya s otsenkoi tochnosti”, Doklady Akademii Nauk, 265:4 (1982), 793–797 | MR | Zbl

[17] Yu. N. Kiselev, “Bystroskhodyaschiesya algoritmy dlya lineinogo optimalnogo bystrodeistviya”, Kibernetika, 62:6 (1990), 47–57 | MR | Zbl

[18] G. V. Shevchenko, “Chislennyi algoritm resheniya lineinoi zadachi optimalnogo bystrodeistviya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 42:8 (2002), 1184–1196 | MR

[19] R. E. Hartl, S. P. Sethi, R. G. Vickson, “A servey of the maxsimum principle for optimal control problems with state constraints”, SIAM Review, 37 (1995), 181–218 | DOI | MR | Zbl

[20] V. M. Aleksandrov, “Chislennyi metod resheniya zadachi lineinogo bystrodeistviya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 38:6 (1998), 918–931 | MR | Zbl

[21] V. M. Aleksandrov, “Priblizhennoe reshenie zadachi lineinogo bystrodeistviya”, Avtomatika i telemekhanika, 12 (1998), 3–13

[22] V. M. Aleksandrov, “Reshenie zadach optimalnogo upravleniya na osnove metoda kvazioptimalnogo upravleniya”, Trudy Instituta matematiki SO AN SSSR. Modeli i metody optimizatsii, 10, Nauka, Novosibirsk, 1988, 18–54

[23] V. M. Aleksandrov, “Priblizhennoe reshenie zadach optimalnogo upravleniya”, Problemy kibernetiki, 41, Nauka, Moskva, 1994, 143–146

[24] F. L. Chernousko, Otsenivanie fazovykh koordinat. Metod ellipsoidov, Nauka, Moskva, 1994 | MR

[25] D. Nesh, “Beskoalitsionnye igry”, Matrichnye igry, ed. N. N. Vorobev, Fizmatgiz, Moskva, 1961 | MR

[26] A. A. Belolipetskii, “Chislennyi metod resheniya lineinoi zadachi optimalnogo upravleniya svedeniem ee k zadache Koshi”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 17:6 (1977), 1380–1386 | MR

[27] Yu. N. Kiselev, “Bystro skhodyaschiesya algoritmy dlya lineinogo optimalnogo bystrodeistviya”, Kibernetika, 62:6 (1990), 47–57 | MR | Zbl