Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2009_6_a19, author = {V. M. Aleksandrov}, title = {Sequential synthesis of time optimal control by a~linear system with disturbance}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {385--439}, publisher = {mathdoc}, volume = {6}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a19/} }
TY - JOUR AU - V. M. Aleksandrov TI - Sequential synthesis of time optimal control by a~linear system with disturbance JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2009 SP - 385 EP - 439 VL - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a19/ LA - ru ID - SEMR_2009_6_a19 ER -
V. M. Aleksandrov. Sequential synthesis of time optimal control by a~linear system with disturbance. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 385-439. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a19/
[1] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Nauka, Moskva, 1976 | Zbl
[2] V. M. Aleksandrov, “Posledovatelnyi sintez optimalnogo po bystrodeistviyu upravleniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 39:9 (1999), 1464–1478 | MR | Zbl
[3] V. M. Aleksandrov, “Skhodimost metoda posledovatelnogo sinteza optimalnogo po bystrodeistviyu upravleniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 39:10 (1999), 1650–1661 | MR | Zbl
[4] V. M. Aleksandrov, “Iteratsionnyi metod vychisleniya v realnom vremeni optimalnogo po bystrodeistviyu upravleniya”, Sibirskii zhurnal vychislitelnoi matematiki, 10:1 (2007), 1–28 | Zbl
[5] V. M. Aleksandrov, “Posledovatelnyi sintez optimalnogo po bystrodeistviyu upravleniya v realnom vremeni”, Avtomatika i telemekhanika, 8 (2008), 3–24 | MR | Zbl
[6] V. M. Aleksandrov, “Posledovatelnyi sintez optimalnogo po bystrodeistviyu upravleniya lineinymi sistemami s vozmuscheniyami”, Sibirskii zhurnal vychislitelnoi matematiki, 11:3 (2008), 251–270 | Zbl
[7] R. Gabasov, F. M. Kirillova, O. I. Kostyukova, “Optimizatsiya lineinoi sistemy upravleniya v rezhime realnogo vremeni”, Izvestiya RAN. Tekhnicheskaya kibernetika, 1992, no. 4, 3–19 | MR | Zbl
[8] N. V. Balashevich, R. Gabasov, F. M. Kirillova, “Chislennye metody programmnoi i pozitsionnoi optimizatsii lineinykh sistem upravleniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 40:6 (2000), 838–859 | MR | Zbl
[9] R. Gabasov, F. M. Kirillova, “Optimalnoe upravlenie v rezhime realnogo vremeni”, Vtoraya mezhdunarodnaya konferentsiya po problemam upravleniya, Plenarnye doklady (17–19 iyunya 2003 g.), IPU im. V. A. Trapeznikova RAN, M., 2003, 20–47
[10] R. P. Fedorenko, Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, Moskva, 1978 | MR | Zbl
[11] V. V. Dikusar, A. A. Milyutin, Kachestvennye i chislennye metody v printsipe maksimuma, Nauka, Moskva, 1989 | MR | Zbl
[12] V. A. Srochko, Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, Moskva, 2000
[13] N. E. Kirin, “K resheniyu obschei zadachi lineinogo bystrodeistviya”, Avtomatika i telemekhanika, 1 (1964), 16–22 | MR
[14] B. N. Pshenichnyi, L. A. Sobolenko, “Uskorennyi metod resheniya zadachi lineinogo bystrodeistviya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 8:6 (1968), 1343–1351
[15] A. Ya. Dubovitskii, V. A. Rubtsov, “Lineinye bystrodeistviya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 10:1 (1970), 216–223
[16] E. Dyurkovich, “Chislennyi metod resheniya lineinykh zadach bystrodeistviya s otsenkoi tochnosti”, Doklady Akademii Nauk, 265:4 (1982), 793–797 | MR | Zbl
[17] Yu. N. Kiselev, “Bystroskhodyaschiesya algoritmy dlya lineinogo optimalnogo bystrodeistviya”, Kibernetika, 62:6 (1990), 47–57 | MR | Zbl
[18] G. V. Shevchenko, “Chislennyi algoritm resheniya lineinoi zadachi optimalnogo bystrodeistviya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 42:8 (2002), 1184–1196 | MR
[19] R. E. Hartl, S. P. Sethi, R. G. Vickson, “A servey of the maxsimum principle for optimal control problems with state constraints”, SIAM Review, 37 (1995), 181–218 | DOI | MR | Zbl
[20] V. M. Aleksandrov, “Chislennyi metod resheniya zadachi lineinogo bystrodeistviya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 38:6 (1998), 918–931 | MR | Zbl
[21] V. M. Aleksandrov, “Priblizhennoe reshenie zadachi lineinogo bystrodeistviya”, Avtomatika i telemekhanika, 12 (1998), 3–13
[22] V. M. Aleksandrov, “Reshenie zadach optimalnogo upravleniya na osnove metoda kvazioptimalnogo upravleniya”, Trudy Instituta matematiki SO AN SSSR. Modeli i metody optimizatsii, 10, Nauka, Novosibirsk, 1988, 18–54
[23] V. M. Aleksandrov, “Priblizhennoe reshenie zadach optimalnogo upravleniya”, Problemy kibernetiki, 41, Nauka, Moskva, 1994, 143–146
[24] F. L. Chernousko, Otsenivanie fazovykh koordinat. Metod ellipsoidov, Nauka, Moskva, 1994 | MR
[25] D. Nesh, “Beskoalitsionnye igry”, Matrichnye igry, ed. N. N. Vorobev, Fizmatgiz, Moskva, 1961 | MR
[26] A. A. Belolipetskii, “Chislennyi metod resheniya lineinoi zadachi optimalnogo upravleniya svedeniem ee k zadache Koshi”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 17:6 (1977), 1380–1386 | MR
[27] Yu. N. Kiselev, “Bystro skhodyaschiesya algoritmy dlya lineinogo optimalnogo bystrodeistviya”, Kibernetika, 62:6 (1990), 47–57 | MR | Zbl