Around a~conjecture of P.~Hall
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 366-380

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we discuss perspectives of future investigations of the Hall $\pi$-properties $E_\pi$, $C_\pi$ and $D_\pi$ in finite groups. A series of open problems is stated, both comparatirely new and well-known ones. It is proven that there are infinitely many infinite sets $\pi$ of primes with $E_\pi\Rightarrow D_\pi$. Precisely if $\pi$ consists of the primes $p>x$, for every real $x\ge7$ then $E_\pi\Rightarrow D_\pi$. This result continues the investigations initiated by well-known Hall's conjecture of 1956 that $E_\pi\Rightarrow D_\pi$ for every set $\pi$ of odd primes. This conjecture was disproved by F. Gross, who showed in 1984 that, for every finite set $\pi$ of odd primes with $|\pi|\ge2$, there exists a finite group $G$ such that $G\in E_\pi$ and $G\notin D_\pi$.
Keywords: prime number, $\pi$-subgroup, $\pi$-Hall subgroup, properties $E_\pi$, $C_\pi$ and $D_\pi$.
@article{SEMR_2009_6_a18,
     author = {D. O. Revin},
     title = {Around a~conjecture of {P.~Hall}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {366--380},
     publisher = {mathdoc},
     volume = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a18/}
}
TY  - JOUR
AU  - D. O. Revin
TI  - Around a~conjecture of P.~Hall
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2009
SP  - 366
EP  - 380
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a18/
LA  - ru
ID  - SEMR_2009_6_a18
ER  - 
%0 Journal Article
%A D. O. Revin
%T Around a~conjecture of P.~Hall
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2009
%P 366-380
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a18/
%G ru
%F SEMR_2009_6_a18
D. O. Revin. Around a~conjecture of P.~Hall. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 366-380. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a18/