Around a~conjecture of P.~Hall
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 366-380.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we discuss perspectives of future investigations of the Hall $\pi$-properties $E_\pi$, $C_\pi$ and $D_\pi$ in finite groups. A series of open problems is stated, both comparatirely new and well-known ones. It is proven that there are infinitely many infinite sets $\pi$ of primes with $E_\pi\Rightarrow D_\pi$. Precisely if $\pi$ consists of the primes $p>x$, for every real $x\ge7$ then $E_\pi\Rightarrow D_\pi$. This result continues the investigations initiated by well-known Hall's conjecture of 1956 that $E_\pi\Rightarrow D_\pi$ for every set $\pi$ of odd primes. This conjecture was disproved by F. Gross, who showed in 1984 that, for every finite set $\pi$ of odd primes with $|\pi|\ge2$, there exists a finite group $G$ such that $G\in E_\pi$ and $G\notin D_\pi$.
Keywords: prime number, $\pi$-subgroup, $\pi$-Hall subgroup, properties $E_\pi$, $C_\pi$ and $D_\pi$.
@article{SEMR_2009_6_a18,
     author = {D. O. Revin},
     title = {Around a~conjecture of {P.~Hall}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {366--380},
     publisher = {mathdoc},
     volume = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a18/}
}
TY  - JOUR
AU  - D. O. Revin
TI  - Around a~conjecture of P.~Hall
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2009
SP  - 366
EP  - 380
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a18/
LA  - ru
ID  - SEMR_2009_6_a18
ER  - 
%0 Journal Article
%A D. O. Revin
%T Around a~conjecture of P.~Hall
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2009
%P 366-380
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a18/
%G ru
%F SEMR_2009_6_a18
D. O. Revin. Around a~conjecture of P.~Hall. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 366-380. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a18/

[1] P. Hall, “Theorems like Sylow's”, Proc. London Math. Soc., 6:22 (1956), 286–304 | DOI | MR | Zbl

[2] P. Hall, “A note on soluble groups”, J. London Math. Soc., 3 (1928), 98–105 | DOI | Zbl

[3] P. Hall, “A characteristic property of soluble groups”, J. London Math. Soc., 12 (1937), 198–200 | DOI

[4] S. A. Chunikhin, “O razreshimykh gruppakh”, Izv. NIIMM Tom. univ., 2 (1938), 220–223 | Zbl

[5] V. D. Mazurov, D. O. Revin, “O khollovom $D_\pi$-svoistve dlya konechnykh grupp”, Sibirskii matem. zh., 38:1 (1997), 106–113 | MR | Zbl

[6] D. O. Revin, “Khollovy $\pi$-podgruppy konechnykh grupp Shevalle, kharakteristika kotorykh prinadlezhit $\pi$”, Matem. trudy, 2:1 (1999), 157–205 | MR

[7] E. P. Vdovin, D. O. Revin, “Khollovy podgruppy nechetnogo poryadka konechnykh grupp”, Algebra i logika, 41:1 (2002), 15–56 | MR | Zbl

[8] D. O. Revin, “Svoistvo $D_\pi$ v odnom klasse konechnykh grupp”, Algebra i logika, 41:3 (2002), 335–370 | MR | Zbl

[9] D. O. Revin, E. P. Vdovin, “Hall subgroups of finite groups”, Contemporary Mathematics, 402, 2006, 229–263 | MR | Zbl

[10] D. O. Revin, “Svoistvo $D_{\pi}$ konechnykh grupp v sluchae, kogda $2\not\in\pi$”, Trudy IMM UrO RAN, 13, no. 1, 2007, 166–182 | MR

[11] D. O. Revin, “Kharakterizatsiya konechnykh $D_\pi$-grupp”, Doklady RAN, 417:5 (2007), 601–604 | MR | Zbl

[12] D. O. Revin, “Svoistvo $D_\pi$ v lineinykh i unitarnykh gruppakh”, Sib. matem. zh., 49:2 (2008), 437–448 | MR | Zbl

[13] D. O. Revin, “Svoistvo $D_\pi$ v konechnykh prostykh gruppakh”, Algebra i logika, 47:3 (2008), 364–394 | MR | Zbl

[14] H. Wielandt, “Zusammengesetzte Gruppen: Hölder Programm heute”, The Santa Cruz conf. on finite groups (Santa Cruz, 1979), Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence RI, 1980, 161–173 | MR

[15] F. Gross, “Odd order Hall subgrous of $\rm{GL}(n,q)$ and $\rm{Sp}(2n,q)$”, Math. Z., 187:2 (1984), 185–194 | MR | Zbl

[16] F. Gross, “On a conjecture of Philip Hall”, Proc. London Math. Soc., Ser. III, 52:3 (1986), 464–494 | DOI | MR | Zbl

[17] F. Gross, “Conjugacy of odd order Hall subgroups”, Bull. London Math. Soc., 19:4 (1987), 311–319 | DOI | MR | Zbl

[18] F. Gross, “Odd order Hall subgroups of the classical linear groups”, Math. Z., 220:3 (1995), 317–336 | DOI | MR | Zbl

[19] Z. Arad, M. B. Ward, “New criteria for the solvability of finite groups”, J. Algebra, 77:1 (1982), 234–246 | DOI | MR | Zbl

[20] R. W. Carter, Simple groups of Lie type, John Wiley and Sons, London, 1972 | MR | Zbl

[21] J. G. Thompson, “Hall subgroups of the symmetric groups”, J. Comb. Th., 1:2 (1966), 271–279 | DOI | MR | Zbl

[22] K. Zsigmondy, “Zur Theorie der Potenzreste”, J. Monatshefte Math. Phys., 3 (1892), 265–284 | DOI | MR

[23] B. Rosser, “Explicit Bounds for Some Functions of Prime Numbers”, Amer. J. Math., 63:1 (1941), 211–232 | DOI | MR

[24] D. Gorenstein, Finite simple groups. An introduction to their classification, University Series in Mathematics, Plenum Publishing, New York, 1982 | MR | Zbl

[25] L. Dirichlet, “Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sing, unendlich viele Primzahlen erhält”, Abhandlungen der Königlich Preussischen Akademie der Wissenschaften, 1837, 45–81