Integral and integro-local theorems for the sums of random variables with semiexponential distribution
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 251-271.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, as in [1], we obtain some integral and integro-local theorems for the sums $S_n=\xi_1+\dots+\xi_n$ of independent random variables with general semiexponential distribution (i.e., a distribution whose right tail has the form $\mathbf P(\xi\ge t)=e^{-t^\beta L(t)}$, where $\beta\in(0,1)$ and $L(t)$ is a slowly varying function with some smoothness properties). These theorems describe the asymptotic behavior as $x\to\infty$ of the probabilities $$ \mathbf P(S_n\ge x)\quad\text{and}\quad\mathbf P(S_n\in[x,x+\Delta)) $$ on the whole semiaxis (i.e., in the zone of normal deviations and all zones of large deviations of $x$: in the Cramér and intermediate zones, and also in the “extrem” zone where the distribution of $S_n$ is approximated by that of maximal summand). In the present paper (in contrast to [1]) we have used the minimal moment condition $\mathbf E\xi^2\infty$ on the left tail of the distribution. Under this condition we can not define a segment of the Cramér series (the probabilities under consideration were described via the segment of the Cramér series in the Cramér and intermediate zones in [1]), and have to consider another characteristic instead of it.
Keywords: semiexponential distribution, deviation function, integral theorem, integro-local theorem, segment of Cramér series, random walk, large deviations, Cramér zone of deviations, intermediate zone of deviations, zone of approximated by the maximal summand.
@article{SEMR_2009_6_a14,
     author = {A. A. Mogul'skii},
     title = {Integral and integro-local theorems for the sums of random variables with semiexponential distribution},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {251--271},
     publisher = {mathdoc},
     volume = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a14/}
}
TY  - JOUR
AU  - A. A. Mogul'skii
TI  - Integral and integro-local theorems for the sums of random variables with semiexponential distribution
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2009
SP  - 251
EP  - 271
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a14/
LA  - ru
ID  - SEMR_2009_6_a14
ER  - 
%0 Journal Article
%A A. A. Mogul'skii
%T Integral and integro-local theorems for the sums of random variables with semiexponential distribution
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2009
%P 251-271
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a14/
%G ru
%F SEMR_2009_6_a14
A. A. Mogul'skii. Integral and integro-local theorems for the sums of random variables with semiexponential distribution. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 251-271. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a14/

[1] Borovkov A. A., Mogulskii A. A., “Integro-lokalnye i integralnye teoremy dlya summ sluchainykh velichin s semieksponentsialnymi raspredeleniyami”, Sib. matem., 47:6 (2006), 1218–1257 | MR | Zbl

[2] Borovkov A. A., Borovkov K. A., Asymptotic analysis of random walks. Heavy-tailed distributions, Encyclopedia of Mathematics and its Applications, 118, Cambridge University Press, 2008 | MR | Zbl

[3] Borovkov A. A., “Veroyatnosti bolshikh uklonenii dlya dlya sluchainykh bluzhdanii s semieksponentsialnymi raspredeleniyami”, Sib. matem. zh., 41:6 (2000), 1290–1324 | MR | Zbl

[4] Borovkov A. A., Mogulskii A. A., “Integro-lokalnye predelnye teoremy dlya summ sluchainykh vektorov, vklyuchayuschie bolshie ukloneniya. I”, Teoriya veroyatnostei i ee primeneniya, 43:1 (1998), 3–17 | MR | Zbl

[5] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965

[6] Borovkov A. A., Mogulskii A. A., “O bolshikh i sverkhbolshikh ukloneniyakh summ nezavisimykh sluchainykh vektorov pri vypolnenii usloviya Kramera. I”, Teoriya veroyatnostei i ee primeneniya, 51:2 (2006), 260–294 | MR

[7] Borovkov A. A., Mogulskii A. A., “O bolshikh i sverkhbolshikh ukloneniyakh summ nezavisimykh sluchainykh vektorov pri vypolnenii usloviya Kramera. II”, Teoriya veroyatnostei i ee primeneniya, 51:4 (2006), 641–673 | MR

[8] Mogulskii A. A., “O bolshikh ukloneniyakh vremeni pervogo prokhozhdeniya dlya sluchainogo bluzhdani s semieksponentsialno raspredelennymi skachkami”, Sib. matem. zh., 47:6 (2006), 1323–1341 | MR

[9] Borovkov A. A., Mogulskii A. A., “Veroyatnosti bolshikh uklonenii dlya summ nezavisimykh sluchainykh vektorov na granitse i vne kramerovskoi zony. I”, Teoriya veroyatn. i ee primen., 53:2 (2008), 336–344

[10] Borovkov A. A., Mogulskii A. A., “Veroyatnosti bolshikh uklonenii dlya summ nezavisimykh sluchainykh vektorov na granitse i vne kramerovskoi zony. II”, Teoriya veroyatn. i ee primen., 53:4 (2008), 641–664 | MR

[11] Osipov L. V., “O veroyatnostyakh bolshikh uklonenii summ nezavisimykh sluchainykh velichin”, Teoriya veroyatnostei i ee primeneniya, 17:2 (1972), 320–341 | MR | Zbl

[12] Nagaev S. V., “Large deviations for sums of independent random variables”, Ann. Probab., 7:5 (1979), 745–789 | DOI | MR | Zbl

[13] Rozovskii L. V., “Veroyatnosti bolshikh uklonenii na vsei osi”, Teoriya veroyatnostei i ee primeneniya, 38:1 (1993), 79–109 | MR

[14] Nagaev S. V., “Nekotorye predelnye teoremy dlya bolshikh uklonenii”, Teoriya veroyatnostei i ee primeneniya, 10:2 (1965), 231–254 | MR | Zbl

[15] Petrov V. V., “Predelnye teoremy dlya bolshikh uklonenii, kogda uslovie Kramera narusheno I, II”, Vestnik LGU, 19 (1963), 49–68 ; 1 (1968), 58–75 | Zbl

[16] Volf V., “O veroyatnostyakh bolshikh uklonenii v sluchae narusheni usloviya Kramera”, Math. Nachr., 70 (1975), 197–215 | DOI | MR

[17] Wolf W., “Asymptotische Entwicklungen fer Wahrscheinlichkeiten grosser Abweichungen”, Z. Wahrsch. Verw. Geb., 40 (1977), 239–256 | DOI | MR | Zbl

[18] Saulis L., Statulyavichus V., Predelnye teoremy o bolshikh ukloneniyakh, Mokslas, Vilnyus, 1989 | MR | Zbl

[19] Mikosh T, Nagaev A. V., “Large deviations of heavy-tailed sums with applications in insurance”, Extremes, 1 (1998), 81–110 | DOI | MR

[20] Nagaev A. V., “Integralnye predelnye teoremy, vklyuchayuschie bolshie ukloneniya, kogda uslovie Kramera ne vypolneno. I, II”, Teoriya veroyatnostei i ee primeneniya, 14:1 (1969), 51–64 ; 14:2, 203–214 | MR | Zbl | MR

[21] Nagaev A. V., “Ob odnom svoistve summ nezavisimykh sluchainykh velichin”, Teoriya veroyatnostei i ee primeneniya, 22:2 (1977), 335–346 | MR | Zbl

[22] Pinelis I. F., “Ob asimptoticheskoi ekvivalentnosti veroyatnostei bolshikh uklonenii summy i maksimuma nezavisimykh sluchainykh velichin”, Tr. In-ta matematiki, AN SSSR, Sib. otdelenie, 1985, 144–173 | MR

[23] Borovkov A. A., “Otsenki dlya raspredelenii summ i maksimumov summ sluchainykh velichin pri nevypolnenii usloviya Kramera”, Sib. matem. zh., 41:5 (2000), 997–1038 | MR | Zbl

[24] Rozovskii L. V., “Veroyatnosti bolshikh uklonenii summ nezavisimykh sluchainykh velichin s obschei funktsiei raspredeleniya iz oblasti prityazheniya normalnogo zakona”, Teoriya veroyatnostei i ee primeneniya, 34:4 (1989), 686–705 | MR

[25] Borovkov A. A., Mogulskii A. A., Bolshie ukloneniya i proverka statisticheskikh gipotez, Nauka, Novosibirsk, 1992

[26] Zhulenev S. V., “O bolshikh ukloneniyakh. II”, Teoriya veroyatnostei i ee primeneniya, 49:4 (2004), 672–694 | MR

[27] Borovkov A. A., Mogulskii A. A., Rozovskii L. V., Sakhanenko A. I., “Pismo v redaktsiyu: O rabote S. V. Zhuleneva “O bolshikh ukloneniyakh. II””, Teoriya veroyatnostei i ee primeneniya, 51:4 (2006), 445–446 | MR

[28] Mogulskii A. A., “Integro-lokalnaya teorema, deistvuyuschaya na vsei poluosi, dlya summ sluchainykh velichin s pravilno menyayuschimisya raspredeleniyami”, Sib. matem. zh., 49:4 (2008), 837–854 | MR

[29] Borovkov A. A., Mogulskii A. A., “Integro-lokalnye teoremy dlya summ nezavisimykh sluchainykh vektorov v skheme serii”, Matem. zametki, 79:4 (2006), 505–521 | MR | Zbl

[30] Gnedenko B. V., “O lokalnoi predelnoi teoreme teorii veroyatnostei”, Uspekhi matem. nauk, 3:3 (1948), 187–194 | MR

[31] Gnedenko B. V., Kolmogorov A. N., Predelnye raspredeleni dlya summ nezavisimykh sluchainykh velichin, GITTL, M., L., 1949

[32] Shepp L. A., “A local limit theorem”, Ann. Math. Statist., 35 (1964), 419–423 | DOI | MR | Zbl

[33] Stone C., “On local and ratio limit theorems”, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Part 2, v. II, University of California Press, Berkeley, 1966, 217–224 | MR

[34] Rvacheva E. L., “Ob oblastyakh prityazheniya mnogomernykh raspredelenii”, Uchenye zapiski Lvovskogo Gosudarstvennogo Universiteta, Ser. mekh.-mat., 6 (1958), 5–44

[35] Stone C., “A local limit theorem for nonlattice multy-dimensional distribution functions”, Ann Math. Statist., 36 (1965), 546–551 | DOI | MR | Zbl