Solving the Seidel problem on the volume of hyperbolic tetrahedron
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 211-218 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate Seidel conjecture on volumes of hyperbolic and spherical tetrahedra. In the present paper we solve negatively the Extended Seidel problem formed by I. Rivin and F. Luo.
Keywords: Seidel conjecture, hyperbolic volume
Mots-clés : tetrahedron.
@article{SEMR_2009_6_a11,
     author = {N. V. Abrosimov},
     title = {Solving the {Seidel} problem on the volume of hyperbolic tetrahedron},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {211--218},
     year = {2009},
     volume = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a11/}
}
TY  - JOUR
AU  - N. V. Abrosimov
TI  - Solving the Seidel problem on the volume of hyperbolic tetrahedron
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2009
SP  - 211
EP  - 218
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a11/
LA  - ru
ID  - SEMR_2009_6_a11
ER  - 
%0 Journal Article
%A N. V. Abrosimov
%T Solving the Seidel problem on the volume of hyperbolic tetrahedron
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2009
%P 211-218
%V 6
%U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a11/
%G ru
%F SEMR_2009_6_a11
N. V. Abrosimov. Solving the Seidel problem on the volume of hyperbolic tetrahedron. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 211-218. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a11/

[1] Sabitov I. Kh., “Ob'em mnogogrannika kak funktsiya dlin ego reber”, Fundament. i prikl. mat., 2:4 (1996), 1235–1246 | MR | Zbl

[2] Lobachevsky N. I., Imaginäre Geometrie und ihre Anwendung auf einige Integrale. Deutsche Übersetzung von H. Liebmann, Teubner, Leipzig, 1904

[3] Schläfli L., “Theorie der vielfachen Kontinuität”, Gesammelte mathematishe Abhandlungen, Birkhäuser, Basel, 1950

[4] Kellerhals R., “On the volume of hyperbolic polyhedra”, Math. Ann., 285 (1989), 541–569 | DOI | MR | Zbl

[5] Mednykh A. D., Parker J., Vesnin A. Yu., “On hyperbolic polyhedra arising as convex cores of quasi-Fuchsian punctured torus groups”, Bol. Soc. Mat. Mexicana (3), 10 (2004), 357–381 | MR | Zbl

[6] Vinberg E. B., Geometriya – 2, Itogi nauki i tekhniki. Ser. Sovremennye problemy matematiki, 29, VINITI, Moskva, 1988 | MR

[7] Cho Yu., Kim H., “On the volume formula for hyperbolic tetrahedra”, Disc. and Comp. Geometry, 22 (1999), 347–366 | DOI | MR | Zbl

[8] Murakami J., Yano M., “On the volume of a hyperbolic and spherical tetrahedron”, Comm. Anal. Geom., 13 (2005), 379–200 | MR

[9] Ushijima A., “Volume formula for generalized hyperbolic tetrahedra”, Non-Euclidean Geometries, Mathematics and Its Applications, 581, 2006, 249–265 | MR | Zbl

[10] Derevnin D. A., Mednykh A. D., “O formule ob'ema giperbolicheskogo tetraedra”, Usp. mat. nauk, 60:2 (2005), 159–160 | MR | Zbl

[11] Sforza G., “Spazi metrico-proiettivi”, Ricerche di Estensionimetria differenziale III, 8 (1906), 3–66

[12] Milnor J., “Hyperbolic geometry: the first 150 years”, Bull. Amer. Math. Soc., 6:1 (1982), 9–24 | DOI | MR | Zbl

[13] Derevnin D. A., Mednykh A. D., Pashkevich M. G., “Ob'em simmetrichnogo tetraedra v giperbolicheskom i sfericheskom prostranstvakh”, Sib. mat. zhurn., 45:5 (2004), 1022–1031 | MR | Zbl

[14] N. V. Abrosimov, M. Godoi-Molina, A. D. Mednykh, “Ob ob'eme sfericheskogo oktaedra s simmetriyami”, Sovrem. mat. i ee pril., 60 (2008), 3–12 | MR

[15] J. J. Seidel, “On the volume of a hyperbolic simplex”, Stud. Sci. Math. Hung., 21 (1986), 243–249 | MR | Zbl

[16] Luo F., “On a problem of Fenchel”, Geometriae Dedicata, 64 (1997), 227–282 | DOI | MR

[17] L. Schläfli, “On the multiple integral $\int\int\ldots\int dx dy\ldots dz$ whose limits are $p_1=a_1 x+b_1y+\ldots+h_1z>0$, $p_2>0$, $\ldots p_n>0$ and $x^2+y^2+\ldots+z^21$”, Quart. J. Math., 2 (1858), 269–300; 3 (1860), 54–68; 97–108

[18] H. Kneser, “Der Simplexinhalt in der nichteuklidischen Geometrie”, Deutsche Math., 1 (1936), 337–340

[19] J. W. Milnor, “How to Compute Volume in Hyperbolic Space”, Collected Papers, v. 1, Geometry, Publish or Perish, 1994, 189–212 | MR

[20] A. D. Mednykh, M. G. Pashkevich, “Elementarnye formuly dlya giperbolicheskogo tetraedra”, Sib. matem. zhurn., 47:4 (2006), 831–841 | MR | Zbl