Solving the Seidel problem on the volume of hyperbolic tetrahedron
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 211-218.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate Seidel conjecture on volumes of hyperbolic and spherical tetrahedra. In the present paper we solve negatively the Extended Seidel problem formed by I. Rivin and F. Luo.
Keywords: Seidel conjecture, hyperbolic volume
Mots-clés : tetrahedron.
@article{SEMR_2009_6_a11,
     author = {N. V. Abrosimov},
     title = {Solving the {Seidel} problem on the volume of hyperbolic tetrahedron},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {211--218},
     publisher = {mathdoc},
     volume = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a11/}
}
TY  - JOUR
AU  - N. V. Abrosimov
TI  - Solving the Seidel problem on the volume of hyperbolic tetrahedron
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2009
SP  - 211
EP  - 218
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a11/
LA  - ru
ID  - SEMR_2009_6_a11
ER  - 
%0 Journal Article
%A N. V. Abrosimov
%T Solving the Seidel problem on the volume of hyperbolic tetrahedron
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2009
%P 211-218
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a11/
%G ru
%F SEMR_2009_6_a11
N. V. Abrosimov. Solving the Seidel problem on the volume of hyperbolic tetrahedron. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 211-218. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a11/

[1] Sabitov I. Kh., “Ob'em mnogogrannika kak funktsiya dlin ego reber”, Fundament. i prikl. mat., 2:4 (1996), 1235–1246 | MR | Zbl

[2] Lobachevsky N. I., Imaginäre Geometrie und ihre Anwendung auf einige Integrale. Deutsche Übersetzung von H. Liebmann, Teubner, Leipzig, 1904

[3] Schläfli L., “Theorie der vielfachen Kontinuität”, Gesammelte mathematishe Abhandlungen, Birkhäuser, Basel, 1950

[4] Kellerhals R., “On the volume of hyperbolic polyhedra”, Math. Ann., 285 (1989), 541–569 | DOI | MR | Zbl

[5] Mednykh A. D., Parker J., Vesnin A. Yu., “On hyperbolic polyhedra arising as convex cores of quasi-Fuchsian punctured torus groups”, Bol. Soc. Mat. Mexicana (3), 10 (2004), 357–381 | MR | Zbl

[6] Vinberg E. B., Geometriya – 2, Itogi nauki i tekhniki. Ser. Sovremennye problemy matematiki, 29, VINITI, Moskva, 1988 | MR

[7] Cho Yu., Kim H., “On the volume formula for hyperbolic tetrahedra”, Disc. and Comp. Geometry, 22 (1999), 347–366 | DOI | MR | Zbl

[8] Murakami J., Yano M., “On the volume of a hyperbolic and spherical tetrahedron”, Comm. Anal. Geom., 13 (2005), 379–200 | MR

[9] Ushijima A., “Volume formula for generalized hyperbolic tetrahedra”, Non-Euclidean Geometries, Mathematics and Its Applications, 581, 2006, 249–265 | MR | Zbl

[10] Derevnin D. A., Mednykh A. D., “O formule ob'ema giperbolicheskogo tetraedra”, Usp. mat. nauk, 60:2 (2005), 159–160 | MR | Zbl

[11] Sforza G., “Spazi metrico-proiettivi”, Ricerche di Estensionimetria differenziale III, 8 (1906), 3–66

[12] Milnor J., “Hyperbolic geometry: the first 150 years”, Bull. Amer. Math. Soc., 6:1 (1982), 9–24 | DOI | MR | Zbl

[13] Derevnin D. A., Mednykh A. D., Pashkevich M. G., “Ob'em simmetrichnogo tetraedra v giperbolicheskom i sfericheskom prostranstvakh”, Sib. mat. zhurn., 45:5 (2004), 1022–1031 | MR | Zbl

[14] N. V. Abrosimov, M. Godoi-Molina, A. D. Mednykh, “Ob ob'eme sfericheskogo oktaedra s simmetriyami”, Sovrem. mat. i ee pril., 60 (2008), 3–12 | MR

[15] J. J. Seidel, “On the volume of a hyperbolic simplex”, Stud. Sci. Math. Hung., 21 (1986), 243–249 | MR | Zbl

[16] Luo F., “On a problem of Fenchel”, Geometriae Dedicata, 64 (1997), 227–282 | DOI | MR

[17] L. Schläfli, “On the multiple integral $\int\int\ldots\int dx dy\ldots dz$ whose limits are $p_1=a_1 x+b_1y+\ldots+h_1z>0$, $p_2>0$, $\ldots p_n>0$ and $x^2+y^2+\ldots+z^21$”, Quart. J. Math., 2 (1858), 269–300; 3 (1860), 54–68; 97–108

[18] H. Kneser, “Der Simplexinhalt in der nichteuklidischen Geometrie”, Deutsche Math., 1 (1936), 337–340

[19] J. W. Milnor, “How to Compute Volume in Hyperbolic Space”, Collected Papers, v. 1, Geometry, Publish or Perish, 1994, 189–212 | MR

[20] A. D. Mednykh, M. G. Pashkevich, “Elementarnye formuly dlya giperbolicheskogo tetraedra”, Sib. matem. zhurn., 47:4 (2006), 831–841 | MR | Zbl