Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2009_6_a10, author = {A. N. Bondarenko and V. A. Dedok}, title = {Quantum {Polya} theorem}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {199--210}, publisher = {mathdoc}, volume = {6}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a10/} }
A. N. Bondarenko; V. A. Dedok. Quantum Polya theorem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 199-210. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a10/
[1] A. N. Bondarenko, V. A. Dedok, “Anderson Localization in 1-D Quantum Random Walk”, Proceedings. The 9th Russian-Korean International Symposium on Science and Technology. V. 1, 2005, 27–32
[2] A. M. Childs, R. Cleve, Exponential algorithmic speedup by quantum walk, arXiv: quant-ph/0209131
[3] K. Ishii, “Localization of Eigenstates and Transport Phenomena in the One-Dimensional Disordered System”, Prog. Theor. Phys. Suppl., 53 (1973), 77–138 | DOI
[4] A. Nayak, A. Vishwanath, Quantum Walk on the Line (Extended Abstract), arXiv: quant-ph/0010117
[5] A. A. Borovkov, Kurs teorii veroyatnostei, Nauka, M., 1972 | MR
[6] V. G. Romanov, Obratnye zadachi matematicheskoi fiziki, Monografiya, Nauka, M., 1984 | MR
[7] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987 | MR
[8] V. Feller, Vvedenie v teoriyu veroyatnostei, v. 1, MIR, M.