Quantum Polya theorem
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 199-210.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we discuss return probability properties of quantum random walk on the line. In the classical case this property is well known as the Polya theorem. We study in detail not only usually discussed “Hadamar walk”. In the general case quantum random walk depends on parameter $\theta$ ($0\le\theta\le\pi$). It was shown that in the most of cases when $0\theta\pi$ quantum random walk is weak localized and recurrent and the return probability tends to $0$ with the speed $1/t$. Other cases are also studied and described.
Keywords: quantum random walk, return probability, Polya theorem.
@article{SEMR_2009_6_a10,
     author = {A. N. Bondarenko and V. A. Dedok},
     title = {Quantum {Polya} theorem},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {199--210},
     publisher = {mathdoc},
     volume = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a10/}
}
TY  - JOUR
AU  - A. N. Bondarenko
AU  - V. A. Dedok
TI  - Quantum Polya theorem
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2009
SP  - 199
EP  - 210
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a10/
LA  - ru
ID  - SEMR_2009_6_a10
ER  - 
%0 Journal Article
%A A. N. Bondarenko
%A V. A. Dedok
%T Quantum Polya theorem
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2009
%P 199-210
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a10/
%G ru
%F SEMR_2009_6_a10
A. N. Bondarenko; V. A. Dedok. Quantum Polya theorem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 199-210. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a10/

[1] A. N. Bondarenko, V. A. Dedok, “Anderson Localization in 1-D Quantum Random Walk”, Proceedings. The 9th Russian-Korean International Symposium on Science and Technology. V. 1, 2005, 27–32

[2] A. M. Childs, R. Cleve, Exponential algorithmic speedup by quantum walk, arXiv: quant-ph/0209131

[3] K. Ishii, “Localization of Eigenstates and Transport Phenomena in the One-Dimensional Disordered System”, Prog. Theor. Phys. Suppl., 53 (1973), 77–138 | DOI

[4] A. Nayak, A. Vishwanath, Quantum Walk on the Line (Extended Abstract), arXiv: quant-ph/0010117

[5] A. A. Borovkov, Kurs teorii veroyatnostei, Nauka, M., 1972 | MR

[6] V. G. Romanov, Obratnye zadachi matematicheskoi fiziki, Monografiya, Nauka, M., 1984 | MR

[7] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987 | MR

[8] V. Feller, Vvedenie v teoriyu veroyatnostei, v. 1, MIR, M.