Partitioning sparse plane graphs into two induced subgraphs of small degree
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 13-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

A graph $G$ is said to be $(a,b)$-partitionable for positive integers $a$, $b$ if its vertices can be partitioned into subsets $V_1$ and $V_2$ such that in $G[V_1]$ any path contains at most a vertices and in $G[V_2]$ any path contains at most $b$ vertices. We prove that every planar graph of girth $8$ is $(2,2)$-partitionable.
Keywords: planar graph, coloring
Mots-clés : vertex partition.
@article{SEMR_2009_6_a1,
     author = {O. V. Borodin and A. O. Ivanova},
     title = {Partitioning sparse plane graphs into two induced subgraphs of small degree},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {13--16},
     publisher = {mathdoc},
     volume = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a1/}
}
TY  - JOUR
AU  - O. V. Borodin
AU  - A. O. Ivanova
TI  - Partitioning sparse plane graphs into two induced subgraphs of small degree
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2009
SP  - 13
EP  - 16
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a1/
LA  - ru
ID  - SEMR_2009_6_a1
ER  - 
%0 Journal Article
%A O. V. Borodin
%A A. O. Ivanova
%T Partitioning sparse plane graphs into two induced subgraphs of small degree
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2009
%P 13-16
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a1/
%G ru
%F SEMR_2009_6_a1
O. V. Borodin; A. O. Ivanova. Partitioning sparse plane graphs into two induced subgraphs of small degree. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 13-16. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a1/

[1] O. V. Borodin, A. V. Kostochka, J. Nesetril, A. Raspaud, E. Sopena, “On the maximal average degree and the oriented chromatic number of a graph”, Discrete Math., 206 (1999), 77–89 | DOI | MR | Zbl

[2] O. V. Borodin, S. J. Kim, A. V. Kostochka, and D. West, “Homomorphisms of sparse graphs with large girth”, J. of Combin. Theory B, 90 (2004), 147–159 | DOI | MR | Zbl

[3] O. V. Borodin, A. O. Ivanova, A. V. Kostochka, “Orientirovannaya 5-raskraska vershin v razrezhennykh grafakh”, Diskretnyi analiz i issledovanie operatsii, 13:1 (2006), 16–32 | MR

[4] O. V. Borodin, S. G. Hartke, A. O. Ivanova, A. V. Kostochka, D. B. West, “$(5,2)$-Coloring of Sparse Graphs”, Siberian Electronic Math. Reports, 5 (2008), 417–426 | MR

[5] O. V. Borodin, A. O. Ivanova, Near-proper list vertex 2-colorings of sparse graphs, submitted

[6] A. N. Glebov, D. Zh. Zambalaeva, “Putevye razbieniya planarnykh grafov”, Sib. elektronnye mat. izvestiya, 4 (2007), 450–459 | MR | Zbl