Partitioning sparse plane graphs into two induced subgraphs of small degree
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 13-16

Voir la notice de l'article provenant de la source Math-Net.Ru

A graph $G$ is said to be $(a,b)$-partitionable for positive integers $a$, $b$ if its vertices can be partitioned into subsets $V_1$ and $V_2$ such that in $G[V_1]$ any path contains at most a vertices and in $G[V_2]$ any path contains at most $b$ vertices. We prove that every planar graph of girth $8$ is $(2,2)$-partitionable.
Keywords: planar graph, coloring
Mots-clés : vertex partition.
@article{SEMR_2009_6_a1,
     author = {O. V. Borodin and A. O. Ivanova},
     title = {Partitioning sparse plane graphs into two induced subgraphs of small degree},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {13--16},
     publisher = {mathdoc},
     volume = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a1/}
}
TY  - JOUR
AU  - O. V. Borodin
AU  - A. O. Ivanova
TI  - Partitioning sparse plane graphs into two induced subgraphs of small degree
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2009
SP  - 13
EP  - 16
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a1/
LA  - ru
ID  - SEMR_2009_6_a1
ER  - 
%0 Journal Article
%A O. V. Borodin
%A A. O. Ivanova
%T Partitioning sparse plane graphs into two induced subgraphs of small degree
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2009
%P 13-16
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a1/
%G ru
%F SEMR_2009_6_a1
O. V. Borodin; A. O. Ivanova. Partitioning sparse plane graphs into two induced subgraphs of small degree. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 13-16. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a1/