Finite simple groups with narrow prime spectrum
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 1-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find the nonabelian finite simple groups with order prime divisors not exceeding 1000. More generally, we determine the sets of nonabelian finite simple groups whose maximal order prime divisor is a fixed prime less than 1000. Our results are based on calculations in the computer algebra system GAP.
Keywords: Finite simple group, group order, prime divisor.
@article{SEMR_2009_6_a0,
     author = {A. V. Zavarnitsin},
     title = {Finite simple groups with narrow prime spectrum},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1--12},
     publisher = {mathdoc},
     volume = {6},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a0/}
}
TY  - JOUR
AU  - A. V. Zavarnitsin
TI  - Finite simple groups with narrow prime spectrum
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2009
SP  - 1
EP  - 12
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a0/
LA  - en
ID  - SEMR_2009_6_a0
ER  - 
%0 Journal Article
%A A. V. Zavarnitsin
%T Finite simple groups with narrow prime spectrum
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2009
%P 1-12
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a0/
%G en
%F SEMR_2009_6_a0
A. V. Zavarnitsin. Finite simple groups with narrow prime spectrum. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 1-12. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a0/

[1] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[2] V. D. Mazurov, “On the set of orders of elements of a finite group”, Algebra and Logic, 33:1 (1994), 49–55 | DOI | MR | Zbl

[3] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.4.10, , 2007 http://www.gap-system.org

[4] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at , 2008 http://www.research.att.com/~njas/sequences/