Finite simple groups with narrow prime spectrum
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 1-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We find the nonabelian finite simple groups with order prime divisors not exceeding 1000. More generally, we determine the sets of nonabelian finite simple groups whose maximal order prime divisor is a fixed prime less than 1000. Our results are based on calculations in the computer algebra system GAP.
Keywords: Finite simple group, group order, prime divisor.
@article{SEMR_2009_6_a0,
     author = {A. V. Zavarnitsin},
     title = {Finite simple groups with narrow prime spectrum},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1--12},
     year = {2009},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a0/}
}
TY  - JOUR
AU  - A. V. Zavarnitsin
TI  - Finite simple groups with narrow prime spectrum
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2009
SP  - 1
EP  - 12
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a0/
LA  - en
ID  - SEMR_2009_6_a0
ER  - 
%0 Journal Article
%A A. V. Zavarnitsin
%T Finite simple groups with narrow prime spectrum
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2009
%P 1-12
%V 6
%U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a0/
%G en
%F SEMR_2009_6_a0
A. V. Zavarnitsin. Finite simple groups with narrow prime spectrum. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 1-12. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a0/

[1] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[2] V. D. Mazurov, “On the set of orders of elements of a finite group”, Algebra and Logic, 33:1 (1994), 49–55 | DOI | MR | Zbl

[3] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.4.10, , 2007 http://www.gap-system.org

[4] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at , 2008 http://www.research.att.com/~njas/sequences/