On automorphisms of a~strongly regular graph $(784,116,0,20)$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 80-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is studied the group $G$ of automorphisms of a strongly regular graph with parameters $(784,116,0,20)$. We proved that if $G$ contain an element of prime order $p$, then $p\in\{2,7\}$. As a corollary, it is followed that the group of automorphisms of this srg is not quasy primitive.
@article{SEMR_2008_5_a9,
     author = {A. L. Gavrilyuk},
     title = {On automorphisms of a~strongly regular graph $(784,116,0,20)$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {80--87},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a9/}
}
TY  - JOUR
AU  - A. L. Gavrilyuk
TI  - On automorphisms of a~strongly regular graph $(784,116,0,20)$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 80
EP  - 87
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a9/
LA  - ru
ID  - SEMR_2008_5_a9
ER  - 
%0 Journal Article
%A A. L. Gavrilyuk
%T On automorphisms of a~strongly regular graph $(784,116,0,20)$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 80-87
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a9/
%G ru
%F SEMR_2008_5_a9
A. L. Gavrilyuk. On automorphisms of a~strongly regular graph $(784,116,0,20)$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 80-87. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a9/

[1] Cameron P., Van Lint J., Designs, Graphs, Codes and their Links, London Math. Soc. Student Texts, 22, Cambr. Univ. Press, 1981, 240 pp. | MR | Zbl

[2] Gavrilyuk A. L., Makhnev A. A., “O grafakh Kreina bez treugolnikov”, Doklady RAN, matem., 403:6 (2005), 727–730 | MR | Zbl

[3] Makhnev A. A., Nosov V. V., “Ob avtomorfizmakh silno regulyarnykh grafov Kreina bez treugolnikov”, Algebra i logika, 44:3 (2005), 335–354 | MR | Zbl

[4] Cameron P., Permutation Groups, London Math. Soc. Student Texts, 45, Cambr. Univ. Press, 1999, 220 pp. | Zbl

[5] Van Dam E., Haemers W. H., “Graphs with constant $\mu$ and $\bar\mu$”, Discrete Math., 162 (1998), 293–307 | MR