Planar graphs without triangular $4$-cycles are $3$-choosable
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 75-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that not all planar graphs are $4$-choosable (Margit Voigt, 1993), but those without $4$-cycles are $4$-choosable (Lam, Xu and Liu, 1999). We prove that all planar graphs without $4$-cycles adjacent to $3$-cycles are $4$-choosable.
@article{SEMR_2008_5_a8,
     author = {O. V. Borodin and A. O. Ivanova},
     title = {Planar graphs without triangular $4$-cycles are $3$-choosable},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {75--79},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a8/}
}
TY  - JOUR
AU  - O. V. Borodin
AU  - A. O. Ivanova
TI  - Planar graphs without triangular $4$-cycles are $3$-choosable
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 75
EP  - 79
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a8/
LA  - en
ID  - SEMR_2008_5_a8
ER  - 
%0 Journal Article
%A O. V. Borodin
%A A. O. Ivanova
%T Planar graphs without triangular $4$-cycles are $3$-choosable
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 75-79
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a8/
%G en
%F SEMR_2008_5_a8
O. V. Borodin; A. O. Ivanova. Planar graphs without triangular $4$-cycles are $3$-choosable. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 75-79. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a8/

[1] O. V. Borodin, “Criterion of chromaticity of a degree prescription”, Abstracts of IV All-Union Conf. on Theoretical Cybernetics (Novosibirsk), 1977, 127–128 (in Russian)

[2] O. V. Borodin, “Structural properties of plane graphs without adjacent triangles and an application to 3-colorings”, J. of Graph Theory, 21:2 (1996), 183–186 | 3.0.CO;2-N class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[3] O. V. Borodin, A. V. Kostochka and B. Toft, “Variable degeneracy: extensions of Brooks' and Gallai's theorems”, Discrete Math., 214 (2000), 101–112 | DOI | MR | Zbl

[4] O. V. Borodin, A. N. Glebov, T. R. Jensen, A. Raspaud, “Planar graphs without triangles adjacent to cycles of length from 3 to 9 are 3-colorable”, Siberian Electronic Math. Reports, 3 (2006), 428–440 http://semr.math.nsc.ru | MR | Zbl

[5] P. Erdős, A. Rubin and H. Taylor, “Choosability in graphs”, Congr. Numer., 26 (1979), 125–157 | MR

[6] T. Gallai, “Kritische Graphen I”, Publ. Math. Inst. Hungar. Acad. Sci., 8 (1963), 165–192 | MR | Zbl

[7] T. R. Jensen and B. Toft, Graph coloring problems, Wiley Interscience, 1995 | MR

[8] P. C. B. Lam, B. Xu, J. Liu, “The 4-choosability of plane graphs without 4-cycles”, J. Combin. Theory B, 76 (1999), 117–126 | DOI | MR | Zbl

[9] C. Thomassen, “Every planar graph is $5$-choosable”, J. Combin. Theory B, 62:1 (1994), 180–181 | DOI | MR | Zbl

[10] V. G. Vizing, “Coloring the vertices of a graph in prescribed colors”, Diskret. Analiz, Novosibirsk, 29 (1976), 3–10 | MR | Zbl

[11] M. Voigt, “List colourings of planar graphs”, Discrete Math., 120 (1993), 215–219 | DOI | MR | Zbl