Planar graphs without triangular $4$-cycles are $3$-choosable
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 75-79

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that not all planar graphs are $4$-choosable (Margit Voigt, 1993), but those without $4$-cycles are $4$-choosable (Lam, Xu and Liu, 1999). We prove that all planar graphs without $4$-cycles adjacent to $3$-cycles are $4$-choosable.
@article{SEMR_2008_5_a8,
     author = {O. V. Borodin and A. O. Ivanova},
     title = {Planar graphs without triangular $4$-cycles are $3$-choosable},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {75--79},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a8/}
}
TY  - JOUR
AU  - O. V. Borodin
AU  - A. O. Ivanova
TI  - Planar graphs without triangular $4$-cycles are $3$-choosable
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 75
EP  - 79
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a8/
LA  - en
ID  - SEMR_2008_5_a8
ER  - 
%0 Journal Article
%A O. V. Borodin
%A A. O. Ivanova
%T Planar graphs without triangular $4$-cycles are $3$-choosable
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 75-79
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a8/
%G en
%F SEMR_2008_5_a8
O. V. Borodin; A. O. Ivanova. Planar graphs without triangular $4$-cycles are $3$-choosable. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 75-79. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a8/