Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2008_5_a50, author = {A. N. Bondarenko and D. S. Ivashchenko}, title = {Numerical methods for solving boundary problems of anomalous diffusion theory}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {581--594}, publisher = {mathdoc}, volume = {5}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a50/} }
TY - JOUR AU - A. N. Bondarenko AU - D. S. Ivashchenko TI - Numerical methods for solving boundary problems of anomalous diffusion theory JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2008 SP - 581 EP - 594 VL - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a50/ LA - ru ID - SEMR_2008_5_a50 ER -
%0 Journal Article %A A. N. Bondarenko %A D. S. Ivashchenko %T Numerical methods for solving boundary problems of anomalous diffusion theory %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2008 %P 581-594 %V 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a50/ %G ru %F SEMR_2008_5_a50
A. N. Bondarenko; D. S. Ivashchenko. Numerical methods for solving boundary problems of anomalous diffusion theory. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 581-594. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a50/
[1] Metzler R., Klafter J., “The random walk's guide to anomalous diffusion: a fractional dynamics approach”, Phys. Rep., 339 (2000), 1–77 | DOI | MR | Zbl
[2] Metzler R., Klafter J., “The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics”, J. Phys. A: Math. Gen., 37 (2004), R161—R208 | DOI | MR | Zbl
[3] Gorenflo R., Mainardi F., Moretti D., Paradisi P., “Time fractional diffusion: a discrete random walk approach”, Nonlinear Dynamics, 29 (2002), 129–143 | DOI | MR | Zbl
[4] Mainardi F., “The fundamental solutions for the fractional diffusion-wave equation”, Appl. Math. Lett., 9:6 (1996), 23–28 | DOI | MR | Zbl
[5] Podlubny I., The Laplace Transform method for Linear Differential Equations of the Fractional Order, Preprint, 1994
[6] Bondarenko A. N., Ivaschenko D. S., “Numerical methods for solving inverse problems for time fractional diffusion equation with variable coefficient”, JIIP, submitted
[7] Gorenflo R., Mainardi F., Moretti D., Pagnini G., Paradisi P., “Discrete random walk models for space-time fractional diffusion”, Chemical Physics, 284 (2002), 521–544 | DOI
[8] Gorenflo R., Vivoli A., Mainardi F., “Discrete and continuous random walk models for space-time fractional diffusion”, Nonlinear Dynamics, 38 (2004), 101–116 | DOI | MR | Zbl
[9] Gorenflo R., Mainardi F., “Simply and multiply scaled diffusion limits for continuous time random walks”, Journal of Physics: Conference series, 7 (2005), 1–16 | DOI
[10] S. B. Yuste and L. Acedo, “An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations”, SIAM J. Numer. Anal., 42 (2005), 1862–1874 | DOI | MR | Zbl