Numerical methods for solving boundary problems of anomalous diffusion theory
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 581-594.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present two methods numerical solution boundary problems for time fractional diffusion equation. The results of cross-validation computer testing also discussed.
Mots-clés : anomalous diffusion
Keywords: numerical methods, Monte Carlo method.
@article{SEMR_2008_5_a50,
     author = {A. N. Bondarenko and D. S. Ivashchenko},
     title = {Numerical methods for solving boundary problems of anomalous diffusion theory},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {581--594},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a50/}
}
TY  - JOUR
AU  - A. N. Bondarenko
AU  - D. S. Ivashchenko
TI  - Numerical methods for solving boundary problems of anomalous diffusion theory
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 581
EP  - 594
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a50/
LA  - ru
ID  - SEMR_2008_5_a50
ER  - 
%0 Journal Article
%A A. N. Bondarenko
%A D. S. Ivashchenko
%T Numerical methods for solving boundary problems of anomalous diffusion theory
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 581-594
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a50/
%G ru
%F SEMR_2008_5_a50
A. N. Bondarenko; D. S. Ivashchenko. Numerical methods for solving boundary problems of anomalous diffusion theory. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 581-594. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a50/

[1] Metzler R., Klafter J., “The random walk's guide to anomalous diffusion: a fractional dynamics approach”, Phys. Rep., 339 (2000), 1–77 | DOI | MR | Zbl

[2] Metzler R., Klafter J., “The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics”, J. Phys. A: Math. Gen., 37 (2004), R161—R208 | DOI | MR | Zbl

[3] Gorenflo R., Mainardi F., Moretti D., Paradisi P., “Time fractional diffusion: a discrete random walk approach”, Nonlinear Dynamics, 29 (2002), 129–143 | DOI | MR | Zbl

[4] Mainardi F., “The fundamental solutions for the fractional diffusion-wave equation”, Appl. Math. Lett., 9:6 (1996), 23–28 | DOI | MR | Zbl

[5] Podlubny I., The Laplace Transform method for Linear Differential Equations of the Fractional Order, Preprint, 1994

[6] Bondarenko A. N., Ivaschenko D. S., “Numerical methods for solving inverse problems for time fractional diffusion equation with variable coefficient”, JIIP, submitted

[7] Gorenflo R., Mainardi F., Moretti D., Pagnini G., Paradisi P., “Discrete random walk models for space-time fractional diffusion”, Chemical Physics, 284 (2002), 521–544 | DOI

[8] Gorenflo R., Vivoli A., Mainardi F., “Discrete and continuous random walk models for space-time fractional diffusion”, Nonlinear Dynamics, 38 (2004), 101–116 | DOI | MR | Zbl

[9] Gorenflo R., Mainardi F., “Simply and multiply scaled diffusion limits for continuous time random walks”, Journal of Physics: Conference series, 7 (2005), 1–16 | DOI

[10] S. B. Yuste and L. Acedo, “An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations”, SIAM J. Numer. Anal., 42 (2005), 1862–1874 | DOI | MR | Zbl