Stability estimates of solutions to ill-posed Cauchy problem for electrodynamics and elasticity equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 531-542.

Voir la notice de l'article provenant de la source Math-Net.Ru

Cauchy problem for of electrodynamics and elasticity equations with data on time-like surfaces are considered. Stability estimates for these problems are stated. Moreover, formulae for coefficients of an asymptotic series for a solution to elasticity equations with a point impulse force are given. These coefficients determine a singular part and jumps of the solution across the characteristic surfaces corresponding to compressive and share waves.
Keywords: stability estimates, Cauchy problem, electrodynamics, isotropic elasticity, asymptotic series.
@article{SEMR_2008_5_a47,
     author = {V. G. Romanov},
     title = {Stability estimates of solutions to ill-posed {Cauchy} problem for electrodynamics and elasticity equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {531--542},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a47/}
}
TY  - JOUR
AU  - V. G. Romanov
TI  - Stability estimates of solutions to ill-posed Cauchy problem for electrodynamics and elasticity equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 531
EP  - 542
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a47/
LA  - ru
ID  - SEMR_2008_5_a47
ER  - 
%0 Journal Article
%A V. G. Romanov
%T Stability estimates of solutions to ill-posed Cauchy problem for electrodynamics and elasticity equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 531-542
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a47/
%G ru
%F SEMR_2008_5_a47
V. G. Romanov. Stability estimates of solutions to ill-posed Cauchy problem for electrodynamics and elasticity equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 531-542. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a47/

[1] Shishatskii S. P., “Apriornye otsenki v zadache o prodolzhenii volnovogo polya s tsilindricheskoi vremenipodobnoi poverkhnosti”, Dokl. AN SSSR, 213:1 (1973), 49–50

[2] Lavrentev M. M, Romanov V. G., Shishatskii S. P., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980 | MR

[3] Klibanov M. V. and Malinsky J., “Newton-Kantorovich method for three-dimensional potential inverse scattering problem and stability of the hyperbolic Cauchy problem with time-dependent data”, Inverse problems, 7 (1991), 577–596 | DOI | MR | Zbl

[4] Klibanov M. V. and Timonov A., Carleman Estimates for Coefficient Inverse Problems and Numerical Applications, VSP, Utrecht, 2004 | MR | Zbl

[5] Imanuvilov O. Yu. and Yamamoto M., “Global Lipschitz stability in an inverse problem by interior observations”, Inverse problems, 17 (2001), 717–728 | DOI | MR | Zbl

[6] Isakov V., “Carleman estimates and applications to inverse problems”, Milan J. Math., 72 (2004), 249–271 | DOI | MR | Zbl

[7] Lasiecka I., Triggiani R. and Yao P. F., “Inverse/observability estimates for second order hyperbolic equations with variable coefficients”, J. Math. Anal. Appl., 235 (1999), 13–57 | DOI | MR | Zbl

[8] Triggiani R. and Yao P. F., “Carleman estimates with no lower-order terms for general Riemann wave equations. Global uniqueness and observability in one shot”, Appl. Math. Optim., 46:2–3 (2002), 334–375 | MR

[9] Romanov V. G., “Karlemanovskie otsenki dlya giperbolicheskogo uravneniya vtorogo poryadka”, Sibirskii matem. zhurn., 47:1 (2006), 169–187 | MR | Zbl

[10] Romanov V. G., “Otsenki resheniya odnogo differentsialnogo neravenstva”, Sibirskii matem. zhurn., 47:3 (2006), 626–635 | MR | Zbl

[11] Eller M.M., Isakov V., Nakamura G. and Tataru D., “Uniqueness and stability in the Cauchy problem for Maxwell's and elasticity system”, Studies in Mathematics and its Applications, 31 (2002), 329–349 | DOI | MR | Zbl

[12] Romanov V. G., “Otsenka ustoichivosti resheniya zadachi dlya uravnenii elektrodinamiki s dannymi na vremenipodobnoi poverkhnosti”, Doklady AN, 411:1 (2006), 16–19 | MR

[13] Imanuvilov O. Yu., Isakov V. and Yamamoto M., “An inverse problem for the dynamical Lamé system”, Comm. Pure Appl. Math., 56 (2003), 1–17 | DOI | MR

[14] Romanov V. G., “A stability estimate for the solution to the ill-posed Cauchy problem for elasticity equations”, J. of Inverse and Ill-Posed Problems, 16:6 (2008) | MR | Zbl

[15] Adamar Zh., Zadacha Koshi dlya lineinykh uravnenii s chastnymi proizvodnymi giperbolicheskogo tipa, Nauka, M., 1978 | MR

[16] Babich V. M., “Anzatts Adamara, ego analogi, obobscheniya, prilozheniya”, Algebra i analiz, 3:5 (1991), 1–37 | MR

[17] Babich V. M., “Fundamentalnye resheniya giperbolicheskikh uravnenii s peremennymi koeffitsientami”, Matem. sbornik, 52:2 (1960), 709–738 | Zbl

[18] Babich V. M., “Fundamentalnye resheniya dinamicheskikh uravnenii teorii uprugosti dlya neodnorodnoi sredy”, PMM, 25:1 (1961), 38–45 | MR | Zbl

[19] Romanov V. G., Ustoichivost v obratnykh zadachakh, Nauchnyi mir, M., 2005 | MR

[20] Lyav A., Matematicheskaya teoriya uprugosti, ONTI, M., L., 1935

[21] Romanov V. G., “Struktura resheniya zadachi Koshi dlya sistemy uravnenii elektrodinamiki i uprugosti v sluchae tochechnykh istochnikov”, Sibirskii matem. zhurn., 36:3 (1995), 628–649 | MR | Zbl

[22] Romanov V. G., “Asimptoticheskoe razlozhenie resheniya sistemy uravnenii uprugosti s sosredotochennoi impulsnoi siloi”, Sibirskii zhurn. industr. matem., 11:3 (2008) | MR