Continuous measures
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 499-508.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the binary algebra $(B,+,\cdot)$ and abel semigroup $(H,+)$ with neutral $0$-elements and with topologies ensuring a continuity of additive and multiplicative transfers. Let $A$ – subalgebra of algebra $B$. We shall name an additive and continuous mapping $m\colon A\to H$ as an abstract measure. One of fundamental tasks of the general measure theory is an investigation of existance conditions of a continuous extention $\bar m\colon\bar A\to H$ of measure $m\colon A\to H$ to its definition domain closure $\bar A $. A number of author works mentioned in literature is dedicated to solving this problem. There is their brief review fnd some new results described in the article. These results are connected with extentions of a vector measure to an integral sum and the last one to an integral.
Keywords: measure, integral, continuity, topology.
@article{SEMR_2008_5_a43,
     author = {L. Ja. Savel'ev},
     title = {Continuous measures},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {499--508},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a43/}
}
TY  - JOUR
AU  - L. Ja. Savel'ev
TI  - Continuous measures
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 499
EP  - 508
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a43/
LA  - ru
ID  - SEMR_2008_5_a43
ER  - 
%0 Journal Article
%A L. Ja. Savel'ev
%T Continuous measures
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 499-508
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a43/
%G ru
%F SEMR_2008_5_a43
L. Ja. Savel'ev. Continuous measures. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 499-508. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a43/

[1] Savelev L. Ya., “Prodolzhenie mer po nepreryvnosti”, Sib. mat. zh., 5:3 (1964), 639–650 | MR

[2] Savelev L. Ya., “O poryadkovykh topologiyakh i nepreryvnykh merakh”, Sib. mat. zh., 6:6 (1965), 1357–1364 | MR

[3] Savelev L. Ya., “Nekotorye usloviya prodolzhimosti vektornykh mer”, Sib. mat. zh., 9:4 (1968), 940–950 | MR

[4] Savelev L. Ya., Lektsii po matematicheskomu analizu, chast 4, NGU, Novosibirsk, 1975 | MR

[5] Savelev L. Ya., “Prodolzhenie nepreryvnykh mer”, Sib. mat. zh., 20:5 (1979), 1082–1091 | MR

[6] Nedogibchenko G. V., Savelev L. Ya., “Vpolne nepreryvnye mery”, Sib. mat. zh., 22:6 (1981), 126–141 | MR | Zbl

[7] Nedogibchenko G. V., Savelev L. Ya., “Induktivnye predely napravlennostei mer”, v. 1, Trudy IM SOAN, Novosibirsk, 1982, 168–179 | MR | Zbl

[8] Savelev L. Ya., “Mery na ortoreshetkakh”, DAN, 264:5 (1982), 1091–1094 | MR

[9] Savelev L. Ya., Abstraktnye vneshnie mery, preprint 22, Institut matematiki SO AN, 1983

[10] Savelev L. Ya., “Vneshnie mery i topologii”, Sib. mat. zh., 24:2 (1983), 133–149 | MR

[11] Savelev L. Ya., “Operatory na differentsialnykh reshetkakh”, Vestnik NGU, seriya “Matematika, mekhanika, informatika”, 2:3 (2002), 26–43

[12] Savelev L. Ya., “Prostranstva s merami”, Dokl. RAN, 357:3 (1997), 310–312 | MR

[13] Lavrentev M. M., Savelev L. Ya., Teoriya operatorov i nekorrektnye zadachi, Institut Matematiki, Novosibirsk, 1999 | MR

[14] Emkh Zh., Algebraicheskie metody v statisticheskoi mekhanike i kvantovoi teorii polya, Mir, Moskva, 1976

[15] Pytev Yu. P., Vozmozhnost. Elementy teorii i primeneniya, Editorial URSS, Moskva, 2000

[16] Burbaki N., Algebra, Fizmatgiz, Moskva, 1962

[17] Savelev L. Ya., Integrirovanie ravnomerno izmerimykh funktsii, NGU, Novosibirsk, 1984

[18] Segal I. E., Kunze R. A., Integrals and Operators, Springer-Verlag, Berlin, 1978 | MR

[19] M. M. Lavrent'ev, L. J. Savel'ev, Operator Theory and Ill-Posed Problems, Brill Academic Publishers, Netherlands, Leiden; Martinus Nijhoff Publishers and VSP, Boston, 2006, 680 pp. | MR