The Carleman formula for the Maxwell’s equations on a~plane
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 448-455.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Cauchy problem for second-order elliptic equations in an arbitrary bounded planar domain with Cauchy data only on a part of the boundary of the domain. We derive a Carleman-type formula for a solution to this problem and give a conditional stability estimate. Then the result is applied to Maxwell's system.
Keywords: Cauchy problem, second-order elliptic equations, Maxwell's system.
Mots-clés : Carleman formula
@article{SEMR_2008_5_a39,
     author = {\`E. V. Arbuzov and A. L. Bukhgeim},
     title = {The {Carleman} formula for the {Maxwell{\textquoteright}s} equations on a~plane},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {448--455},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a39/}
}
TY  - JOUR
AU  - È. V. Arbuzov
AU  - A. L. Bukhgeim
TI  - The Carleman formula for the Maxwell’s equations on a~plane
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 448
EP  - 455
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a39/
LA  - ru
ID  - SEMR_2008_5_a39
ER  - 
%0 Journal Article
%A È. V. Arbuzov
%A A. L. Bukhgeim
%T The Carleman formula for the Maxwell’s equations on a~plane
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 448-455
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a39/
%G ru
%F SEMR_2008_5_a39
È. V. Arbuzov; A. L. Bukhgeim. The Carleman formula for the Maxwell’s equations on a~plane. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 448-455. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a39/

[1] G. M. Goluzin, V. I. Krylov, “Obobschennaya formula Carleman'a i ee primeneniya k analiticheskomu prodolzheniyu funktsii”, Matem. sbornik, 40:2 (1933), 144–149 | Zbl

[2] I. N. Vekua, Obobschennye analiticheskie funktsii, Nauka, Moskva, 1988 | MR | Zbl

[3] T. Carleman, Les fonctions quasi analytiques, Paris, 1926

[4] M. M. Lavrentev, O nekotorykh nekorrektnykh zadachakh matematicheskoi fiziki, VTs SO AN SSSR, Novosibirsk, 1962 | MR

[5] Sh. Ya. Yarmukhamedov, “O zadache Koshi dlya uravneniya Laplasa”, DAN SSSR, 235:2 (1977), 281–283 | MR | Zbl

[6] A. A. Shlapunov and N. N. Tarkhanov, “Bases with double orthogonality in the Cauchy problem for systems with injective symbol”, Proc. London Math. Soc., 71:3 (1995), 1–52 | DOI | MR | Zbl

[7] M. Ikehata, The enclosure method and its applications. Analytic Extension Formulas and their Applications, Kluwar Academic Publishers, Dordrecht, Boston, London, 2001 | MR | Zbl

[8] L. A. Aizenberg, Formuly Karlemana v kompleksnom analize, Nauka, Novosibirsk, 1990 | MR

[9] L. A. Aizenberg, N. N. Tarkhanov, “Abstraktnaya formula Karlemana”, DAN SSSR, 298:612 (1988), 1292–1296 | MR

[10] Sh. Ya. Yarmukhamedov, T. I. Ishankulov, O. I. Makhmudov, “O zadache Koshi dlya sistemy uravnenii teorii uprugosti v prostranstve”, Cib. mat. zhurnal, 33:1 (1992), 186–190 | MR

[11] O. I. Makhmudov, I. E. Niezov, “Regulyarizatsiya reshenii zadachi Koshi dlya sistemy teorii uprugosti v beskonechnoi oblasti”, Matem. zametki, 68:4 (2000), 548–553 | MR | Zbl

[12] O. I. Makhmudov, “O zadache Koshi dlya ellipticheskikh sistem v prostranstve $\mathbb R^m$”, Matem. zametki, 75:6 (2004), 849–860 | MR | Zbl

[13] E. V. Arbuzov and A. L. Bukhgeim, “Carleman's formulas for A-analitic functions in a half-plane”, J. Inv. Ill-Posed Problems, 5:6 (1997), 491–505 | DOI | MR | Zbl

[14] E. V. Arbuzov, “Zadacha Koshi dlya ellipticheskikh sistem vtorogo poryadka na ploskosti”, Sib. mat. zhurnal, 44:1 (2003), 3–20 | MR | Zbl