Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2008_5_a38, author = {D. S. Anikonov and D. S. Konovalova}, title = {Generalized {Radon} {Transform} and {X-ray} {Tomography}}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {440--447}, publisher = {mathdoc}, volume = {5}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a38/} }
D. S. Anikonov; D. S. Konovalova. Generalized Radon Transform and X-ray Tomography. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 440-447. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a38/
[1] Anikonov D. S., “Spetsialnaya zadacha integralnoi geometrii”, DAN, 415:1 (2007), 7–9 | MR | Zbl
[2] Anikonov D. S., “Indikator kontaktnykh granits dlya zadachi integralnoi geometrii”, SMZh, 49:4 (2008) | MR | Zbl
[3] D. S. Konovalova, Poetapnoe reshenie zadachi tomografii, Tezisy doklada na Mezhdunarodnoi konferentsii “Obratnye i nekorrektnye zadachi matematicheskoi fiziki”, posvyaschennoi 75-letiyu akademika M. M. Lavrenteva 20–25 avgusta 2007, Novosibirsk, Rossiya
[4] Anikonov D. S., “Integro-differential heterogeneity indicator in tomography problem”, J. Inv. Ill-Posed Problems, 7:1 (1999), 17–59 | DOI | MR | Zbl
[5] D..S. Anikonov, A. E. Kovtanyuk, I. V. Prokhorov, Ispolzovanie uravneniya perenosa v tomografii, Logos, M., 2000, 3–224
[6] Mikhlin S. G., Mnogomernye singulyarnye integraly i integralnye uravneniya, Fizmatgiz, M., 1962, 3–254 | MR | Zbl
[7] Vladimirov V. S., “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Trudy MIAN SSSR, 61, 1961, 3–158
[8] Lavrentev M. M., Savelev L. Ya., Teoriya operatorov i nekorrektnye zadachi, Izd. IM SO RAN, 1999, 3–701 | MR
[9] Romanov V. G., Obratnye zadachi dlya differentsialnykh uravnenii, Izd. NGU, 1973, 3–252 | MR
[10] Gelfand I. M., Goncharov A. B., “Nakhozhdenie funktsii s kompaktnym nositelem po integralam vdol linii, presekayuschikh zadannoe mnozhestvo tochek v prostranstve”, Doklady AN SSSR, 290 (1986), 1037–1040 | MR
[11] Palamodov V. P., “Some singular problems of tomography”, Mathematical problems of tomography, Transl. Math. Monographs, 81, Amer. Math. Soc., Providence, RI, 1990, 123–140 | MR
[12] Vainberg E. N., Kazak I. A., Faingoiz M. L., “Rentgenovskaya vychislitelnaya tomografiya po metodu obratnogo proetsirovaniya s filtratsiei dvoinym differentsirovaniem”, Defektoskopiya, 2 (1985), 31–39
[13] Louis A. K., Maass P., “Contour Reconstruction in 3-D $X$-Ray CT”, IEEE Trans. Med. Imag., 12:4 (1993), 109–115 | MR
[14] Katsevich A. I., Ramm A. G., “New method for finding jumpsof a function from its local tomographic data”, Inverse Problems, 11 (1995), 1005–1023 | DOI | MR | Zbl
[15] Derevtsov E. Yu., Picralov V. V., Schuster T., Louis A. K., “Reconstruction of singularities in local vector and tensor tomography”, Abstracts of the International Conference “Inverse Problems: Modelling and Simulation” (May 29–June 02, 2006, Turrey), 38–40
[16] V. Sharafutdinov, M. Skonan, G. Uhlmann., Regularity of ghosts in tensor tomography, Preprint No 136, Izd. IM SO RAN, 2004, 50 pp.
[17] Anikonov D. S., “Ob ogranichennosti singulyarnogo integralnogo operatora v prostranstve $C^\alpha(\overline G)$”, Matem. sbornik, 104(146):4(12) (1977), 515–534 | MR | Zbl
[18] Leipunskii O. I., Novozhilov B. A., Sakharov V. I., Rasprostranenie gamma-kvantov v veschestve, GIMFL, Moskva, 1960, 208 pp.
[19] Fano U., Spenser L., Berger M., Perenos gamma izlucheniya, Gosatomizdat, Moskva, 1963, 296 pp.
[20] Hubbell J. H., Seltzer S. M., Tables of $X$-RAY Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 keV to 20 MeV for Elements $Z=1$ to 92 and 48 additional substances of dosimetric interest, NISTIR-5632, Nat. Inst. of Stand. And Technol., Gaithersburg, 1995, 111 pp.
[21] Natterer F., Matematicheskie aspekty kompyuternoi tomografii, Mir, Moskva, 1990, 279 pp. | MR | Zbl
[22] Siberian Adv. Math., 8 (1998), 1–20 | MR | MR | Zbl
[23] Novikov R. G., An inversion formula for the attenuated $X$-ray transformation, Preprint CNRS, UMR 6629, Departement of Mathematics Universite de Nantes, 2000 | MR
[24] Bukhgeim A. A., Kazantsev S. G., Inversion formula for the fan-beam attenuated Radon transform in a unit disc, Preprint RAS. Siberian Dep. Institute of Mathematics, Novosibirsk, No 99, 2002 | MR
[25] Kazantsev S. G., Bukhgeim A. A., “Inversion of the Scalar and Vector Attenuated $X$-Ray Transforms in a Unit Disc”, J. Inverse and Ill-Posed Probl., 15:7 (2007), 735–765 | DOI | MR | Zbl
[26] Anikonov D. S., “Mnogomernye obratnye zadachi dlya uravneniya perenosa”, Differentsialnye uravneniya, 20:5 (1984), 817–824 | MR | Zbl