Generalized Radon Transform and X-ray Tomography
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 440-447.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a review of the authors articles [1–3]. They are devoted to a new problem of integral geometry in which the known data are integrals along all straight lines in plane. The integrand is an unknown function depending of space points and parameters characterizing straight lines. The surfaces of integrand discontinuity are desired quantity. It is connected with certain problems of X-Ray tomography solved as inverse problems for transport equation [4,5]. The obtained results [1,2] differ from the corresponding fragments in [4,5] by higher generality and simplicity. Also a question of incomplete data has been studied [3]. Probably the statements in this article have its own value and can be used in development of tomography.
Keywords: integral geometry, tomography, indicator of boundaries.
Mots-clés : Radon transform
@article{SEMR_2008_5_a38,
     author = {D. S. Anikonov and D. S. Konovalova},
     title = {Generalized {Radon} {Transform} and {X-ray} {Tomography}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {440--447},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a38/}
}
TY  - JOUR
AU  - D. S. Anikonov
AU  - D. S. Konovalova
TI  - Generalized Radon Transform and X-ray Tomography
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 440
EP  - 447
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a38/
LA  - ru
ID  - SEMR_2008_5_a38
ER  - 
%0 Journal Article
%A D. S. Anikonov
%A D. S. Konovalova
%T Generalized Radon Transform and X-ray Tomography
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 440-447
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a38/
%G ru
%F SEMR_2008_5_a38
D. S. Anikonov; D. S. Konovalova. Generalized Radon Transform and X-ray Tomography. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 440-447. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a38/

[1] Anikonov D. S., “Spetsialnaya zadacha integralnoi geometrii”, DAN, 415:1 (2007), 7–9 | MR | Zbl

[2] Anikonov D. S., “Indikator kontaktnykh granits dlya zadachi integralnoi geometrii”, SMZh, 49:4 (2008) | MR | Zbl

[3] D. S. Konovalova, Poetapnoe reshenie zadachi tomografii, Tezisy doklada na Mezhdunarodnoi konferentsii “Obratnye i nekorrektnye zadachi matematicheskoi fiziki”, posvyaschennoi 75-letiyu akademika M. M. Lavrenteva 20–25 avgusta 2007, Novosibirsk, Rossiya

[4] Anikonov D. S., “Integro-differential heterogeneity indicator in tomography problem”, J. Inv. Ill-Posed Problems, 7:1 (1999), 17–59 | DOI | MR | Zbl

[5] D..S. Anikonov, A. E. Kovtanyuk, I. V. Prokhorov, Ispolzovanie uravneniya perenosa v tomografii, Logos, M., 2000, 3–224

[6] Mikhlin S. G., Mnogomernye singulyarnye integraly i integralnye uravneniya, Fizmatgiz, M., 1962, 3–254 | MR | Zbl

[7] Vladimirov V. S., “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Trudy MIAN SSSR, 61, 1961, 3–158

[8] Lavrentev M. M., Savelev L. Ya., Teoriya operatorov i nekorrektnye zadachi, Izd. IM SO RAN, 1999, 3–701 | MR

[9] Romanov V. G., Obratnye zadachi dlya differentsialnykh uravnenii, Izd. NGU, 1973, 3–252 | MR

[10] Gelfand I. M., Goncharov A. B., “Nakhozhdenie funktsii s kompaktnym nositelem po integralam vdol linii, presekayuschikh zadannoe mnozhestvo tochek v prostranstve”, Doklady AN SSSR, 290 (1986), 1037–1040 | MR

[11] Palamodov V. P., “Some singular problems of tomography”, Mathematical problems of tomography, Transl. Math. Monographs, 81, Amer. Math. Soc., Providence, RI, 1990, 123–140 | MR

[12] Vainberg E. N., Kazak I. A., Faingoiz M. L., “Rentgenovskaya vychislitelnaya tomografiya po metodu obratnogo proetsirovaniya s filtratsiei dvoinym differentsirovaniem”, Defektoskopiya, 2 (1985), 31–39

[13] Louis A. K., Maass P., “Contour Reconstruction in 3-D $X$-Ray CT”, IEEE Trans. Med. Imag., 12:4 (1993), 109–115 | MR

[14] Katsevich A. I., Ramm A. G., “New method for finding jumpsof a function from its local tomographic data”, Inverse Problems, 11 (1995), 1005–1023 | DOI | MR | Zbl

[15] Derevtsov E. Yu., Picralov V. V., Schuster T., Louis A. K., “Reconstruction of singularities in local vector and tensor tomography”, Abstracts of the International Conference “Inverse Problems: Modelling and Simulation” (May 29–June 02, 2006, Turrey), 38–40

[16] V. Sharafutdinov, M. Skonan, G. Uhlmann., Regularity of ghosts in tensor tomography, Preprint No 136, Izd. IM SO RAN, 2004, 50 pp.

[17] Anikonov D. S., “Ob ogranichennosti singulyarnogo integralnogo operatora v prostranstve $C^\alpha(\overline G)$”, Matem. sbornik, 104(146):4(12) (1977), 515–534 | MR | Zbl

[18] Leipunskii O. I., Novozhilov B. A., Sakharov V. I., Rasprostranenie gamma-kvantov v veschestve, GIMFL, Moskva, 1960, 208 pp.

[19] Fano U., Spenser L., Berger M., Perenos gamma izlucheniya, Gosatomizdat, Moskva, 1963, 296 pp.

[20] Hubbell J. H., Seltzer S. M., Tables of $X$-RAY Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 keV to 20 MeV for Elements $Z=1$ to 92 and 48 additional substances of dosimetric interest, NISTIR-5632, Nat. Inst. of Stand. And Technol., Gaithersburg, 1995, 111 pp.

[21] Natterer F., Matematicheskie aspekty kompyuternoi tomografii, Mir, Moskva, 1990, 279 pp. | MR | Zbl

[22] Siberian Adv. Math., 8 (1998), 1–20 | MR | MR | Zbl

[23] Novikov R. G., An inversion formula for the attenuated $X$-ray transformation, Preprint CNRS, UMR 6629, Departement of Mathematics Universite de Nantes, 2000 | MR

[24] Bukhgeim A. A., Kazantsev S. G., Inversion formula for the fan-beam attenuated Radon transform in a unit disc, Preprint RAS. Siberian Dep. Institute of Mathematics, Novosibirsk, No 99, 2002 | MR

[25] Kazantsev S. G., Bukhgeim A. A., “Inversion of the Scalar and Vector Attenuated $X$-Ray Transforms in a Unit Disc”, J. Inverse and Ill-Posed Probl., 15:7 (2007), 735–765 | DOI | MR | Zbl

[26] Anikonov D. S., “Mnogomernye obratnye zadachi dlya uravneniya perenosa”, Differentsialnye uravneniya, 20:5 (1984), 817–824 | MR | Zbl