Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2008_5_a31, author = {V. A. Tashkinov}, title = {On planar graphs without list $3$-coloring}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {685--690}, publisher = {mathdoc}, volume = {5}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a31/} }
V. A. Tashkinov. On planar graphs without list $3$-coloring. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 685-690. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a31/
[1] O. V. Borodin and A. Raspaud, “A Sufficient Condition for Planar Graphs to be 3-Colorable”, J. of Combin. Theory B, 88 (2003), 17–27 | DOI | MR | Zbl
[2] O. V. Borodin and A. N. Glebov, “Dostatochnoe uslovie $3$-raskrashivaemosti ploskikh grafov”, Diskret. analiz i issled. operatsii, 11:1 (2004), 13–29 | MR | Zbl
[3] V. G. Vizing, “Raskraska vershin grafa v predpisannye tsveta”, Metody diskretnogo analiza v teorii kodov i skhem, 29 (1976), 3–10 | MR | Zbl
[4] A. N. Glebov, A. V. Kostochka, V. A. Tashkinov, “Smaller planar triangle-free graphs that are not $3$-list-colorable”, Discrete Math., 290 (2005), 269–274 | DOI | MR | Zbl
[5] B. Grötzsch, “Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel”, Wiss. Zeitschrift der Universität Halle, Math.-Natur. Reihe, 8 (1958), 109–119
[6] T. R. Jensen and B. Toft, Graph coloring problems, Wiley Interscience, 1995 | MR
[7] M. Montassier, “A note on the not $3$-choosability of some families of planar graphs”, Information Processing Letters, 99 (2006), 68–71 | DOI | MR | Zbl
[8] M. Montassier, A. Raspaud, W. Wang, “Bordeaux $3$-color conjecture and $3$-choosability”, Discrete Math., 306 (2006), 573–579 | DOI | MR | Zbl
[9] M. Voigt, “A not $3$-choosable planar graph without $3$-cycles”, Discrete Math., 146 (1995), 325–328 | DOI | MR | Zbl
[10] M. Voigt, “List coloring of planar graphs”, Discrete Math., 120 (1993), 215–219 | DOI | MR | Zbl
[11] M. Voigt, Chastnoe soobschenie
[12] D.-Q. Wang, Y.-P. Wen, K.-L. Wang, “A smaller planar graph without $4$-, $5$-cycles and intersecting triangles that is not $3$-choosable”, Information Processing Letters, 108 (2008), 87–89 | DOI | MR
[13] B. Xu, “A $3$-color theorem on plane graph without $5$-circuits”, Acta Mathematica Sinica, 23 (2007), 1059–1062 | DOI | MR | Zbl