On planar graphs without list $3$-coloring
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 685-690

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a planar graph without $4$-and $5$-cycles and without intersecting triangles that has $366$ vertices and no list $3$-coloring from a set of $4$ colors.
Keywords: planar graph, list coloring, $3$-choosability.
@article{SEMR_2008_5_a31,
     author = {V. A. Tashkinov},
     title = {On planar graphs without list $3$-coloring},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {685--690},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a31/}
}
TY  - JOUR
AU  - V. A. Tashkinov
TI  - On planar graphs without list $3$-coloring
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 685
EP  - 690
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a31/
LA  - ru
ID  - SEMR_2008_5_a31
ER  - 
%0 Journal Article
%A V. A. Tashkinov
%T On planar graphs without list $3$-coloring
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 685-690
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a31/
%G ru
%F SEMR_2008_5_a31
V. A. Tashkinov. On planar graphs without list $3$-coloring. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 685-690. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a31/