On planar graphs without list $3$-coloring
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 685-690.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a planar graph without $4$-and $5$-cycles and without intersecting triangles that has $366$ vertices and no list $3$-coloring from a set of $4$ colors.
Keywords: planar graph, list coloring, $3$-choosability.
@article{SEMR_2008_5_a31,
     author = {V. A. Tashkinov},
     title = {On planar graphs without list $3$-coloring},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {685--690},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a31/}
}
TY  - JOUR
AU  - V. A. Tashkinov
TI  - On planar graphs without list $3$-coloring
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 685
EP  - 690
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a31/
LA  - ru
ID  - SEMR_2008_5_a31
ER  - 
%0 Journal Article
%A V. A. Tashkinov
%T On planar graphs without list $3$-coloring
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 685-690
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a31/
%G ru
%F SEMR_2008_5_a31
V. A. Tashkinov. On planar graphs without list $3$-coloring. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 685-690. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a31/

[1] O. V. Borodin and A. Raspaud, “A Sufficient Condition for Planar Graphs to be 3-Colorable”, J. of Combin. Theory B, 88 (2003), 17–27 | DOI | MR | Zbl

[2] O. V. Borodin and A. N. Glebov, “Dostatochnoe uslovie $3$-raskrashivaemosti ploskikh grafov”, Diskret. analiz i issled. operatsii, 11:1 (2004), 13–29 | MR | Zbl

[3] V. G. Vizing, “Raskraska vershin grafa v predpisannye tsveta”, Metody diskretnogo analiza v teorii kodov i skhem, 29 (1976), 3–10 | MR | Zbl

[4] A. N. Glebov, A. V. Kostochka, V. A. Tashkinov, “Smaller planar triangle-free graphs that are not $3$-list-colorable”, Discrete Math., 290 (2005), 269–274 | DOI | MR | Zbl

[5] B. Grötzsch, “Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel”, Wiss. Zeitschrift der Universität Halle, Math.-Natur. Reihe, 8 (1958), 109–119

[6] T. R. Jensen and B. Toft, Graph coloring problems, Wiley Interscience, 1995 | MR

[7] M. Montassier, “A note on the not $3$-choosability of some families of planar graphs”, Information Processing Letters, 99 (2006), 68–71 | DOI | MR | Zbl

[8] M. Montassier, A. Raspaud, W. Wang, “Bordeaux $3$-color conjecture and $3$-choosability”, Discrete Math., 306 (2006), 573–579 | DOI | MR | Zbl

[9] M. Voigt, “A not $3$-choosable planar graph without $3$-cycles”, Discrete Math., 146 (1995), 325–328 | DOI | MR | Zbl

[10] M. Voigt, “List coloring of planar graphs”, Discrete Math., 120 (1993), 215–219 | DOI | MR | Zbl

[11] M. Voigt, Chastnoe soobschenie

[12] D.-Q. Wang, Y.-P. Wen, K.-L. Wang, “A smaller planar graph without $4$-, $5$-cycles and intersecting triangles that is not $3$-choosable”, Information Processing Letters, 108 (2008), 87–89 | DOI | MR

[13] B. Xu, “A $3$-color theorem on plane graph without $5$-circuits”, Acta Mathematica Sinica, 23 (2007), 1059–1062 | DOI | MR | Zbl