Рseudovarieties of finite semigroups, having the complete radical
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 673-684.

Voir la notice de l'article provenant de la source Math-Net.Ru

Рseudovarieties of finite semigroups having the complete radical are described.
Keywords: finite semigroup, complete radical, pseudovariety.
@article{SEMR_2008_5_a30,
     author = {T. Yu. Fink},
     title = {{\CYRR}seudovarieties of finite semigroups, having the complete radical},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {673--684},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a30/}
}
TY  - JOUR
AU  - T. Yu. Fink
TI  - Рseudovarieties of finite semigroups, having the complete radical
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 673
EP  - 684
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a30/
LA  - ru
ID  - SEMR_2008_5_a30
ER  - 
%0 Journal Article
%A T. Yu. Fink
%T Рseudovarieties of finite semigroups, having the complete radical
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 673-684
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a30/
%G ru
%F SEMR_2008_5_a30
T. Yu. Fink. Рseudovarieties of finite semigroups, having the complete radical. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 673-684. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a30/

[1] Martynov L. M., “Pirmary and reduced varieties of semigroups”, International conference “Semigroups and their applications including semigroup rings”, Abstracts (St.-Petersburg, Russia, 19–30 June, 1995), 38

[2] Martynov L. M., “On notions of completeness, solvability, primarity. Reducibility and purity for arbitrary algebras”, International conference of Modern Algebra and Applications, Vanderbilt University, Nashville, Tennessee, Schedule and Abstracts (May 14–18, 1996), 79–80

[3] Martynov L. M., “O ponyatiyakh polnoty, primarnosti, redutsirovannosti i chistoty dlya proizvolnykh algebr”, Universalnaya algebra i ee prilozheniya, Trudy mezhd. seminara, Peremena, Volgograd, 2000, 179–190

[4] Fink T. Yu., “Konechnye polnye polugruppy”, Estestvennye nauki i ekologiya, Ezhegodnik. Mezhvuzovskii sbornik nauchnykh trudov, 4, Izdatelstvo OmGPU, Omsk, 1999, 8–14

[5] Fink T. Yu., “Vlozhimost i minimalnaya polnota konechnykh polugrupp”, Matematika i informatika: nauka i obrazovanie, Mezhvuzovskii sbornik nauchnykh trudov. Ezhegodnik, 1, Izdatelstvo OmGPU, Omsk, 2001, 20–25

[6] Fink T. Yu., “Konechnye polugruppy s naibolshimi polnymi podpolugruppami”, Matematika i informatika: nauka i obrazovanie, Mezhvuzovskii sbornik nauchnykh trudov. Ezhegodnik, 2, Izdatelstvo OmGPU, Omsk, 2002, 28–34

[7] Fink T. Yu., “Rasscheplyaemye psevdomnogoobraziya konechnykh polugrupp”, Vestnik OmGU, 2005, no. 4, 33–35

[8] Martynov L. M., “Ob odnom radikale algebr so svoistvom transverbalnosti po minimalnym mnogoobraziyam”, Vestnik OmGU, 2004, no. 2, 19–21 | MR

[9] Shevrin L. N., “Polugruppy”, Obschaya algebra, Gl. IV, v. II, ed. L. A. Skornyakov, 1991, 11–191

[10] Pastijn F., Volkov M., “Minimal Noncryptic e-Varieties of regular semigroups”, J. Algebra, 184:3 (1996), 881–896 | DOI | MR | Zbl

[11] Shevrin L. N., “K teorii epigrupp. II”, Matem. sb., 185:9 (1994), 153–177

[12] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, v. 1, Mir, M., 1962