Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2008_5_a28, author = {O. V. Borodin and S. G. Hartke and A. O. Ivanova and A. V. Kostochka and D. B. West}, title = {Circular $(5,2)$-coloring of sparse graphs}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {417--426}, publisher = {mathdoc}, volume = {5}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a28/} }
TY - JOUR AU - O. V. Borodin AU - S. G. Hartke AU - A. O. Ivanova AU - A. V. Kostochka AU - D. B. West TI - Circular $(5,2)$-coloring of sparse graphs JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2008 SP - 417 EP - 426 VL - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a28/ LA - en ID - SEMR_2008_5_a28 ER -
%0 Journal Article %A O. V. Borodin %A S. G. Hartke %A A. O. Ivanova %A A. V. Kostochka %A D. B. West %T Circular $(5,2)$-coloring of sparse graphs %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2008 %P 417-426 %V 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a28/ %G en %F SEMR_2008_5_a28
O. V. Borodin; S. G. Hartke; A. O. Ivanova; A. V. Kostochka; D. B. West. Circular $(5,2)$-coloring of sparse graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 417-426. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a28/
[1] O. V. Borodin, S.-J. Kim, A. V. Kostochka, and D. B. West, “Homomorphisms from sparse graphs with large girth”, J. Comb. Theory. (B), 90 (2004), 147–159 | DOI | MR | Zbl
[2] O. V. Borodin, A. O. Ivanova, A. V. Kostochka, “Oriented 5-coloring of vertices in sparse graphs”, Diskret. analyz i issled. oper., 13:1 (2006), 16–32 | MR
[3] P. Erdös, “Graph theory and probability”, Canad. J. Math., 11 (1959), 34–38 | MR | Zbl
[4] A. Galuccio, L. Goddyn, and P. Hell, “High girth graphs avoiding a minor are nearly bipartite”, J. Comb. Theory (B), 83 (2001), 1–14 | DOI | MR
[5] F. Jaeger, “On circular flows in graphs”, Finite and Infinite Sets (Eger, 1981), Colloq. Math. Soc. J. Bolyai, 37, North-Holland, 1984, 391–402 | MR
[6] T. R. Jensen, B. Toft, Graph coloring problems, John–Wiley Sons, New York, 1995 | MR | Zbl
[7] J. Nešetřil and X. Zhu, “On bounded tree-width duality of graphs”, J. Graph Theory, 23 (1996), 151–162 | 3.0.CO;2-L class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[8] W. T. Tutte, “A contribution to the theory of chromatic polinomials”, Canad. J. Math., 6 (1954), 80–91 | MR | Zbl
[9] A. Vince, “Star chromatic number”, J. Graph Theory, 12 (1988), 551–559 | DOI | MR | Zbl
[10] M. DeVos, communication at Workshop on Flows and Cycles, Simon Fraser Univ., June 2000
[11] X. Zhu, “Circular chromatic number of planar graphs of large odd girth”, Electronic J. of Combinatorics, 8:1 (2001), Research Paper 25, 11 pp. | MR | Zbl