On models of paraconsistent logic with Kreisel--Putnam's and Scott's axioms
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 407-416.

Voir la notice de l'article provenant de la source Math-Net.Ru

We combine the technique of canonical formulas for the class of extensions of minimal logic with the technique of Kripke $j$-frames. As a result, we characterize paraconsistent logic $\mathbf{Lskp}$ by finite Kripke frames.
Mots-clés : paraconsistent logic
Keywords: canonical formulas, Kripke frame.
@article{SEMR_2008_5_a27,
     author = {M. V. Stukacheva},
     title = {On models of paraconsistent logic with {Kreisel--Putnam's} and {Scott's} axioms},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {407--416},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a27/}
}
TY  - JOUR
AU  - M. V. Stukacheva
TI  - On models of paraconsistent logic with Kreisel--Putnam's and Scott's axioms
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 407
EP  - 416
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a27/
LA  - ru
ID  - SEMR_2008_5_a27
ER  - 
%0 Journal Article
%A M. V. Stukacheva
%T On models of paraconsistent logic with Kreisel--Putnam's and Scott's axioms
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 407-416
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a27/
%G ru
%F SEMR_2008_5_a27
M. V. Stukacheva. On models of paraconsistent logic with Kreisel--Putnam's and Scott's axioms. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 407-416. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a27/

[1] Chagrov A., Zakharyaschev M., Modal Logic, Clarendon press, Oxford, 1997 | MR | Zbl

[2] D. Gabbay, “The decidability of the Kreisel–Putnam system”, The Journal of Symbolic Logic, 35:1 (1970), 54–63 | MR

[3] P. Minari, “On the extensions of intuitionistic propositional logic with Kreisel–Putnam's and Scott's schemes”, Studia Logica, 45:1 (1986), 55–68 | DOI | MR | Zbl

[4] S. Odintsov, “On the structure of paraconsistent extensions of Johansson's logic”, Journal of Applied Logic, 3 (2005), 43–65 | DOI | MR | Zbl

[5] S. Odintsov, “Representation of $j$-algebras and Segerberg's logics”, Logique at Analyse, 165–166 (1999), 81–106 | MR | Zbl

[6] K. Segerberg, “Propositional Logics Related to Heyting's and Johansson's”, Theoria, 34 (1968), 26–61 | DOI | MR

[7] M. Stukacheva, “Nekotorye zamechaniya o konstruktivnykh rasshireniyakh minimalnoi logiki”, Vestnik Novosibirskogo gosudarstvennogo universiteta, seriya: Matematika, mekhanika, informatika, 5:3 (2005), 3–16

[8] M. Stukacheva, “O kanonicheskikh formulakh dlya rasshirenii minimalnoi logiki”, Sibirskie elektronnye matematicheskie izvestiya, 3 (2006), 312–334 http://semr.math.nsc.ru | MR | Zbl

[9] M. Stukacheva, “O diz'yunktivnom svoistve v klasse paraneprotivorechivykh rasshirenii minimalnoi logiki”, Algebra i logika, 43:2 (2004), 235–252 | MR | Zbl

[10] M. Stukacheva, “O kanonicheskikh formulakh paraneprotivorechivogo analoga logiki Skotta”, Algebra i logika, sdano v pechat