On models of paraconsistent logic with Kreisel--Putnam's and Scott's axioms
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 407-416

Voir la notice de l'article provenant de la source Math-Net.Ru

We combine the technique of canonical formulas for the class of extensions of minimal logic with the technique of Kripke $j$-frames. As a result, we characterize paraconsistent logic $\mathbf{Lskp}$ by finite Kripke frames.
Mots-clés : paraconsistent logic
Keywords: canonical formulas, Kripke frame.
@article{SEMR_2008_5_a27,
     author = {M. V. Stukacheva},
     title = {On models of paraconsistent logic with {Kreisel--Putnam's} and {Scott's} axioms},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {407--416},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a27/}
}
TY  - JOUR
AU  - M. V. Stukacheva
TI  - On models of paraconsistent logic with Kreisel--Putnam's and Scott's axioms
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 407
EP  - 416
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a27/
LA  - ru
ID  - SEMR_2008_5_a27
ER  - 
%0 Journal Article
%A M. V. Stukacheva
%T On models of paraconsistent logic with Kreisel--Putnam's and Scott's axioms
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 407-416
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a27/
%G ru
%F SEMR_2008_5_a27
M. V. Stukacheva. On models of paraconsistent logic with Kreisel--Putnam's and Scott's axioms. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 407-416. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a27/