On primitive permutation groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 387-406.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a primitive permutation group on a finite set $X$, $x\in X,$ $y\in X\setminus\{y\}$ and $G_{xy}\unlhd G_x$. It is proved that, if $G$ is of type I, type III(a), type III(c) (of the O'Nan–Scott classification) or $G$ is of type II and $\operatorname{soc}(G)$ is not an exceptional group of Lie type or a sporadic simple group, then $G_{xy}=1$. In addition, it is proved that if $G$ is of type III(b) and $\operatorname{soc}(G)$ is not a direct product of exceptional groups of Lie type or sporadic simple groups, then $G_{xy}=1$.
Mots-clés : primitive permutation group
Keywords: O'Nan–Scott classification.
@article{SEMR_2008_5_a26,
     author = {A. V. Konygin},
     title = {On primitive permutation groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {387--406},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a26/}
}
TY  - JOUR
AU  - A. V. Konygin
TI  - On primitive permutation groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 387
EP  - 406
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a26/
LA  - ru
ID  - SEMR_2008_5_a26
ER  - 
%0 Journal Article
%A A. V. Konygin
%T On primitive permutation groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 387-406
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a26/
%G ru
%F SEMR_2008_5_a26
A. V. Konygin. On primitive permutation groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 387-406. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a26/

[1] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, Novosib. gos. un-t, Novosibirsk, 2002 | MR

[2] Aschbacher M., Finite group theory, Cambridge University Press, Cambridge, 1993 | MR

[3] Aschbacher M., “On the maximal subgroups of the finite classical groups”, Invent. Math., 76 (1984), 469–514 | DOI | MR | Zbl

[4] J. M. Burns, B. Goldsmith, “Maximal order abelian subgroups of symmetric groups”, Bull. London Math. Soc., 21 (1989), 70–72 | DOI | MR | Zbl

[5] Camerom P. J., “Suborbits in transitive permutation groups”, Combinatorics. Part 3: Combinatorial group theory, Proc. NATO Advanced Study Inst. (Breukelen, 1974), Math. Cantre Tracts, 57, Math. Centrum, Amsterdam, 1974, 98–129 | MR

[6] W. Feit, J. G. Thompson, “Solvability of groups of odd order”, Pacific J. Math., 13 (1963), 775–1029 | MR | Zbl

[7] Kleidman P., “The maximal subgroups of the finite 8-dimensional orthogonal groups $P\Omega_8^+(q)$ and their automorphism groups”, J. Algebra, 110:1 (1987), 173–242 | DOI | MR | Zbl

[8] P. Kleidman, M. Liebeck, The subgroup structure of the finite classical groups, Lond. Math. Soc. Lect. Note Ser., 129, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[9] M. W. Liebeck, Ch. E. Praeger, J. Saxl, “A classification of the maximal subgroups of the finite alternating and symmetric groups”, J. Algebra, 111 (1987), 365–383 | DOI | MR | Zbl

[10] M. W. Liebeck, Ch. E. Praeger, J. Saxl, “On the O'Nan – Scott theorem for finite primitive permutation groups”, J. Austral. Math. Soc. Series A, 44 (1988), 389–396 | DOI | MR | Zbl

[11] “On primitive groups of odd order”, Amer. J. Math., 26 (1904), 1–30 | DOI | MR

[12] Weiss M. J., “On simply transitive groups”, Bull. Amer. Math. Soc., 40 (1934), 401–405 | DOI | MR | Zbl

[13] Wielandt H., Finite permutation groups, Acad. Press, New York, 1964 | MR | Zbl