On primitive permutation groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 387-406

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a primitive permutation group on a finite set $X$, $x\in X,$ $y\in X\setminus\{y\}$ and $G_{xy}\unlhd G_x$. It is proved that, if $G$ is of type I, type III(a), type III(c) (of the O'Nan–Scott classification) or $G$ is of type II and $\operatorname{soc}(G)$ is not an exceptional group of Lie type or a sporadic simple group, then $G_{xy}=1$. In addition, it is proved that if $G$ is of type III(b) and $\operatorname{soc}(G)$ is not a direct product of exceptional groups of Lie type or sporadic simple groups, then $G_{xy}=1$.
Mots-clés : primitive permutation group
Keywords: O'Nan–Scott classification.
@article{SEMR_2008_5_a26,
     author = {A. V. Konygin},
     title = {On primitive permutation groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {387--406},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a26/}
}
TY  - JOUR
AU  - A. V. Konygin
TI  - On primitive permutation groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 387
EP  - 406
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a26/
LA  - ru
ID  - SEMR_2008_5_a26
ER  - 
%0 Journal Article
%A A. V. Konygin
%T On primitive permutation groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 387-406
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a26/
%G ru
%F SEMR_2008_5_a26
A. V. Konygin. On primitive permutation groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 387-406. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a26/