Perfect colorings of radius $r>1$ of the infinite rectangular grid
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 283-292
Voir la notice de l'article provenant de la source Math-Net.Ru
A coloring of vertices of a graph $G$ with $n$ colors is called perfect of radius $r$ if the number of vertices of each color in a ball of radius $r$ depends only on the color of the center of this ball. Perfect colorings of radius $1$ have been studied before under different names including equitable partitions. The notion of perfect coloring is a generalization of the notion of a perfect code, in fact, a perfect code is a special case of a perfect coloring. We consider perfect colorings of the graph of the infinite rectangular grid.
Perfect colorings of the infinite rectangular grid can be interpreted as two-dimensional words over a finite alphabet of colors. We prove that every perfect coloring of radius $r>1$ of this graph is periodic.
Keywords:
perfect coloring, perfect code, graph of the infinite rectangular grid.
Mots-clés : equitable partition
Mots-clés : equitable partition
@article{SEMR_2008_5_a20,
author = {S. A. Puzynina},
title = {Perfect colorings of radius $r>1$ of the infinite rectangular grid},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {283--292},
publisher = {mathdoc},
volume = {5},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a20/}
}
S. A. Puzynina. Perfect colorings of radius $r>1$ of the infinite rectangular grid. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 283-292. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a20/