On the structure of periodic groups saturated by semidihedral groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 14-19

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak R$ be a set of finite groups. A group $G$ is said to be saturated by $\mathfrak R$, if every finite subgroup of $G$ is contained in a subgroup isomorphic to a group from $\mathfrak R$. We prove that a periodic group saturated by the set consisting of the semidihedral group is locally finite.
@article{SEMR_2008_5_a2,
     author = {L. R. Tukhvatullina},
     title = {On the structure of periodic groups saturated by semidihedral groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {14--19},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a2/}
}
TY  - JOUR
AU  - L. R. Tukhvatullina
TI  - On the structure of periodic groups saturated by semidihedral groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 14
EP  - 19
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a2/
LA  - ru
ID  - SEMR_2008_5_a2
ER  - 
%0 Journal Article
%A L. R. Tukhvatullina
%T On the structure of periodic groups saturated by semidihedral groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 14-19
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a2/
%G ru
%F SEMR_2008_5_a2
L. R. Tukhvatullina. On the structure of periodic groups saturated by semidihedral groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 14-19. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a2/