On the structure of periodic groups saturated by semidihedral groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 14-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak R$ be a set of finite groups. A group $G$ is said to be saturated by $\mathfrak R$, if every finite subgroup of $G$ is contained in a subgroup isomorphic to a group from $\mathfrak R$. We prove that a periodic group saturated by the set consisting of the semidihedral group is locally finite.
@article{SEMR_2008_5_a2,
     author = {L. R. Tukhvatullina},
     title = {On the structure of periodic groups saturated by semidihedral groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {14--19},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a2/}
}
TY  - JOUR
AU  - L. R. Tukhvatullina
TI  - On the structure of periodic groups saturated by semidihedral groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 14
EP  - 19
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a2/
LA  - ru
ID  - SEMR_2008_5_a2
ER  - 
%0 Journal Article
%A L. R. Tukhvatullina
%T On the structure of periodic groups saturated by semidihedral groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 14-19
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a2/
%G ru
%F SEMR_2008_5_a2
L. R. Tukhvatullina. On the structure of periodic groups saturated by semidihedral groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 14-19. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a2/

[1] Shlepkin A. K., “Sopryazhenno biprimitivno konechnye gruppy, soderzhaschie konechnye nerazreshimye podgruppy”, Sb. tez. 3-i mezhdunar. konf. po algebre (23–28 avgusta 1993), Krasnoyarsk, 369

[2] Rubashkin A.G., Gruppy, nasyschennye zadannymi mnozhestvami konechnykh grupp, dis. $\dots$ kand. fiz.-mat. nauk, Krasnoyarsk, 2006

[3] Shunkov V. P., “O periodicheskikh gruppakh s pochti regulyarnoi involyutsiei”, Algebra i logika, 4:11 (1972), 470–494

[4] Lytkina D. V., “Stroenie gruppy, poryadki elementov kotoroi ne prevoskhodyat chisla 4”, Matematicheskie sistemy, 4 (2005), 602–617

[5] Sanov I. N., “Resheniya problem Bernsaida dlya perioda 4”, Uchen. zapiski LGU. Ser. Matem., 10 (1940), 166–170 | MR

[6] Kargapolov M. I., Merzlyakov Yu. V., Osnovy teorii grupp, Nauka, M., 1982, 288 pp. | MR | Zbl