Upper complexity bounds for an infinite family of graph-manifolds
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 215-228.

Voir la notice de l'article provenant de la source Math-Net.Ru

We provide a new formula for an upper bound of complexity of closed connected graph-manifolds obtained by gluing together two Seifert manifolds fibered over the disc with two exceptional fibers and a Seifert manifolds fibered over the annulus with one exceptional fiber. This bound turns out to be sharp for all such manifolds up to complexity 12.
Keywords: Matveev's complexity, graph-manifolds.
@article{SEMR_2008_5_a17,
     author = {E. A. Fominykh},
     title = {Upper complexity bounds for an infinite family of graph-manifolds},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {215--228},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a17/}
}
TY  - JOUR
AU  - E. A. Fominykh
TI  - Upper complexity bounds for an infinite family of graph-manifolds
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 215
EP  - 228
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a17/
LA  - ru
ID  - SEMR_2008_5_a17
ER  - 
%0 Journal Article
%A E. A. Fominykh
%T Upper complexity bounds for an infinite family of graph-manifolds
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 215-228
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a17/
%G ru
%F SEMR_2008_5_a17
E. A. Fominykh. Upper complexity bounds for an infinite family of graph-manifolds. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 215-228. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a17/

[1] S. S. Anisov, “Flip-ekvivalentnost triangulyatsii poverkhnostei”, Vestnik Moskovskogo universiteta. Seriya 1: Matematika, mekhanika, 2 (1994), 61–67 | MR | Zbl

[2] S. V. Matveev, “Tabulirovanie trekhmernykh mnogoobrazii”, Uspekhi matematicheskikh nauk, 60 (2005), 97–122 | MR | Zbl

[3] M. A. Ovchinnikov, “Predstavlenie gomeotopii tora prostymi poliedrami s kraem”, Matematicheskie zametki, 66 (1999), 533–539 | MR

[4] M. A. Ovchinnikov, “Postroenie prostykh spainov mnogoobrazii Valdkhauzena”, Sbornik trudov mezhdunarodnoi konferentsii “Malomernaya topologiya i kombinatornaya teoriya grupp”, Institut matematiki NAN Ukrainy, Kiev, 2000, 65–86

[5] S. Anisov, “Exact values of complexity for an infinite number of 3-manifolds”, Moscow Mathematical Journal, 5:2 (2005), 305–310 | MR | Zbl

[6] R. Frigerio, B. Martelli, C. Petronio, “Complexity and Heegaard genus of an infinite class of compact 3-manifolds”, Pacific Journal of Mathematics, 210 (2003), 283–297 | DOI | MR | Zbl

[7] B. Martelli, C. Petronio, “3-manifolds having complexity at most $9$”, Experimental Mathematics, 10 (2001), 207–236 | MR | Zbl

[8] B. Martelli, C. Petronio, “Complexity of geometric $3$-manifolds”, Geometriae Dedicata, 108 (2004), 15–69 | DOI | MR | Zbl

[9] S. V. Matveev, Algoritghmic topology and classification of 3-manifolds, Springer ACM-monographs, 9, 2003 | MR