Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2008_5_a17, author = {E. A. Fominykh}, title = {Upper complexity bounds for an infinite family of graph-manifolds}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {215--228}, publisher = {mathdoc}, volume = {5}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a17/} }
E. A. Fominykh. Upper complexity bounds for an infinite family of graph-manifolds. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 215-228. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a17/
[1] S. S. Anisov, “Flip-ekvivalentnost triangulyatsii poverkhnostei”, Vestnik Moskovskogo universiteta. Seriya 1: Matematika, mekhanika, 2 (1994), 61–67 | MR | Zbl
[2] S. V. Matveev, “Tabulirovanie trekhmernykh mnogoobrazii”, Uspekhi matematicheskikh nauk, 60 (2005), 97–122 | MR | Zbl
[3] M. A. Ovchinnikov, “Predstavlenie gomeotopii tora prostymi poliedrami s kraem”, Matematicheskie zametki, 66 (1999), 533–539 | MR
[4] M. A. Ovchinnikov, “Postroenie prostykh spainov mnogoobrazii Valdkhauzena”, Sbornik trudov mezhdunarodnoi konferentsii “Malomernaya topologiya i kombinatornaya teoriya grupp”, Institut matematiki NAN Ukrainy, Kiev, 2000, 65–86
[5] S. Anisov, “Exact values of complexity for an infinite number of 3-manifolds”, Moscow Mathematical Journal, 5:2 (2005), 305–310 | MR | Zbl
[6] R. Frigerio, B. Martelli, C. Petronio, “Complexity and Heegaard genus of an infinite class of compact 3-manifolds”, Pacific Journal of Mathematics, 210 (2003), 283–297 | DOI | MR | Zbl
[7] B. Martelli, C. Petronio, “3-manifolds having complexity at most $9$”, Experimental Mathematics, 10 (2001), 207–236 | MR | Zbl
[8] B. Martelli, C. Petronio, “Complexity of geometric $3$-manifolds”, Geometriae Dedicata, 108 (2004), 15–69 | DOI | MR | Zbl
[9] S. V. Matveev, Algoritghmic topology and classification of 3-manifolds, Springer ACM-monographs, 9, 2003 | MR