Index sets of prime model
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 200-210.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that for every nontrivial language $\sigma$, the index set of the class of $d$-decidable prime computable models of $\sigma$ is $\Sigma_3^{0,d}\setminus\Sigma_3^{0,d}$-complete and that the index set of all prime computable models of $\sigma$ is $\Pi_{\omega+2}^0$-complete.
Keywords: prime model, computable model, index sets, model-theoretic constructions, hyperarithmetic hierarchy.
@article{SEMR_2008_5_a15,
     author = {E. N. Pavlovskii},
     title = {Index sets of prime model},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {200--210},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a15/}
}
TY  - JOUR
AU  - E. N. Pavlovskii
TI  - Index sets of prime model
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 200
EP  - 210
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a15/
LA  - ru
ID  - SEMR_2008_5_a15
ER  - 
%0 Journal Article
%A E. N. Pavlovskii
%T Index sets of prime model
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 200-210
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a15/
%G ru
%F SEMR_2008_5_a15
E. N. Pavlovskii. Index sets of prime model. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 200-210. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a15/

[1] Goncharov S. S., “Problema chisla neavtoekvivalentnykh konstruktivizatsii”, Algebra i logika, 19:6 (1980), 621–639 | MR | Zbl

[2] S. S. Goncharov, Yu. L. Ershov, Konstruktivnye modeli, Nauchnaya kniga, Novosibirsk, 1999

[3] S. S. Goncharov, Dzh. Nait, “Vychislimye strukturnye i antistrukturnye teoremy”, Algebra i logika, 41:6 (2002), 639–681 | MR | Zbl

[4] Goncharov S. S., “Computability and Computable Models”, Mathematical problems from applied logic, Logics for the XXIst century, v. II, International Mathematical Series (New York), eds. Dov M. Gabbay, Sergey S. Goncharov and Michael Zakharyaschev, Springer, New York, 2007, 99–216 | MR | Zbl

[5] Nurtazin A. T., Vychislimye klassy i algebraicheskie kriterii avtoustoichivosti, Diss. $\dots$ kand. fiz.-mat. nauk, AN Kazakhskoi SSR. In-t matematiki i mekhaniki. Lab. algebry i logiki, Alma-Ata, 1974, 70 pp. | Zbl

[6] Pavlovskii E. N., “Otsenka algoritmicheskoi slozhnosti klassov vychislimykh modelei”, Sib. mat. zhurnal, 49:3 (2008), 635–649 | MR

[7] Fokina E. B., “Indeksnye mnozhestva razreshimykh modelei”, Sib. mat. zhurnal, 48:5 (2007), 1167–1179 | MR | Zbl