Ideal Krull-symmetry of iterated extensions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 193-199.

Voir la notice de l'article provenant de la source Math-Net.Ru

A ring R is said to be ideal Krull-symmetric if for any ideal I of R, the right Krull dimension of I is equal to the left Krull dimension of I. Let now R be commutative Noetherian ring. In this paper we show that certain Ore extensions of R are ideal Krull-symmetric. The rings that we deal with are: $S_t(R)=R[x_1;\sigma_1][x_2;\sigma_2]\dots[x_t,\sigma_t]$, the iterated skew-polynomial ring, where each $\sigma_i$ is an automorphism of $S_{i-1}(R)$ $L_t(R) = R[x_1, x_1^{-1}; \sigma_1][x_2, x_2^{-1};\sigma_2\dots[x_t,x_t^{-1};\sigma_t]$, the iterated skew-Laurent polynomial ring, where each $\sigma_i$ is an automorphism of $L_{i-1}(R)$ $D_t(R) = R[x_1;\delta_1][x_2;\delta_{2}]\dots[x_t;\delta_t]$, the iterated differential polynomial ring, where each $\delta_i$ is a derivation of $D_{i-1}(R)$ such that each $\delta_i\mid R$ is a derivation of R and, $A_t(R)$ is any of $S_t(R)$ or $L_t(R)$, where $\sigma_i\mid R$ is an automorphism of R. With this we prove that $A_t(R)$ and $D_t(R)$ are ideal Krull-symmetric.
Keywords: derivation, Ore extension, annihilator, Krull-symmetry.
Mots-clés : Automorphism, Krull dimension
@article{SEMR_2008_5_a14,
     author = {V. K. Bhat},
     title = {Ideal {Krull-symmetry} of iterated extensions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {193--199},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a14/}
}
TY  - JOUR
AU  - V. K. Bhat
TI  - Ideal Krull-symmetry of iterated extensions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 193
EP  - 199
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a14/
LA  - en
ID  - SEMR_2008_5_a14
ER  - 
%0 Journal Article
%A V. K. Bhat
%T Ideal Krull-symmetry of iterated extensions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 193-199
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a14/
%G en
%F SEMR_2008_5_a14
V. K. Bhat. Ideal Krull-symmetry of iterated extensions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 193-199. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a14/

[1] V. K. Bhat, “Associated prime ideals of skew polynomial rings”, Beiträge zur Algebra und Geometrie, 49:1 (2008), 277–283 | MR

[2] K. R. Goodearl and R. B. Warfield Jr., An introduction to non-commutative Noetherian rings, Cambridge Uni. Press, 1989 | Zbl

[3] R. Gordon and J. C. Robson, Krull dimension, Memoirs of the Amer. Math. Soc., 133, 1973 | MR | Zbl

[4] J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Revised Edition, Amer. Math. Soc., 2000 | MR

[5] L. H. Rowen, Ring theory, Academic Press, Inc, 1991 | MR | Zbl

[6] A. Seidenberg, “Differential ideals in rings of finitely generated Type”, Amer. J. Math., 89 (1967), 22–42 | DOI | MR | Zbl