Ideal Krull-symmetry of iterated extensions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 193-199
Cet article a éte moissonné depuis la source Math-Net.Ru
A ring R is said to be ideal Krull-symmetric if for any ideal I of R, the right Krull dimension of I is equal to the left Krull dimension of I. Let now R be commutative Noetherian ring. In this paper we show that certain Ore extensions of R are ideal Krull-symmetric. The rings that we deal with are: $S_t(R)=R[x_1;\sigma_1][x_2;\sigma_2]\dots[x_t,\sigma_t]$, the iterated skew-polynomial ring, where each $\sigma_i$ is an automorphism of $S_{i-1}(R)$ $L_t(R) = R[x_1, x_1^{-1}; \sigma_1][x_2, x_2^{-1};\sigma_2\dots[x_t,x_t^{-1};\sigma_t]$, the iterated skew-Laurent polynomial ring, where each $\sigma_i$ is an automorphism of $L_{i-1}(R)$ $D_t(R) = R[x_1;\delta_1][x_2;\delta_{2}]\dots[x_t;\delta_t]$, the iterated differential polynomial ring, where each $\delta_i$ is a derivation of $D_{i-1}(R)$ such that each $\delta_i\mid R$ is a derivation of R and, $A_t(R)$ is any of $S_t(R)$ or $L_t(R)$, where $\sigma_i\mid R$ is an automorphism of R. With this we prove that $A_t(R)$ and $D_t(R)$ are ideal Krull-symmetric.
Keywords:
derivation, Ore extension, annihilator, Krull-symmetry.
Mots-clés : Automorphism, Krull dimension
Mots-clés : Automorphism, Krull dimension
@article{SEMR_2008_5_a14,
author = {V. K. Bhat},
title = {Ideal {Krull-symmetry} of iterated extensions},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {193--199},
year = {2008},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a14/}
}
V. K. Bhat. Ideal Krull-symmetry of iterated extensions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 193-199. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a14/
[1] V. K. Bhat, “Associated prime ideals of skew polynomial rings”, Beiträge zur Algebra und Geometrie, 49:1 (2008), 277–283 | MR
[2] K. R. Goodearl and R. B. Warfield Jr., An introduction to non-commutative Noetherian rings, Cambridge Uni. Press, 1989 | Zbl
[3] R. Gordon and J. C. Robson, Krull dimension, Memoirs of the Amer. Math. Soc., 133, 1973 | MR | Zbl
[4] J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Revised Edition, Amer. Math. Soc., 2000 | MR
[5] L. H. Rowen, Ring theory, Academic Press, Inc, 1991 | MR | Zbl
[6] A. Seidenberg, “Differential ideals in rings of finitely generated Type”, Amer. J. Math., 89 (1967), 22–42 | DOI | MR | Zbl