Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2008_5_a12, author = {G. A. Noskov}, title = {Geodesics in the {Heisenberg} group: an elementary approach}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {177--188}, publisher = {mathdoc}, volume = {5}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a12/} }
G. A. Noskov. Geodesics in the Heisenberg group: an elementary approach. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 177-188. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a12/
[1] Siberian Math. J., 29:6 (1988), 887–897 | DOI | MR | Zbl
[2] Siberian Math. J., 35:1 (1994), 1–8 | DOI | MR
[3] Herbert Busemann, “The isoperimetric problem in the Minkowski plane”, Amer. J. Math., 69 (1947), 863–871 | DOI | MR | Zbl
[4] Isaac Chavel, Isoperimetric inequalities. Differential geometric and analytic perspectives, Cambridge Tracts in Mathematics, 145, Cambridge University Press, Cambridge, 2001 | MR | Zbl
[5] Wei-Liang Chow, “Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung”, Math. Ann., 117 (1939), 98–105 | MR | Zbl
[6] S. È. Con-Vossen, Nekotorye voprosy differentsialnoi geometrii v tselom, ed. N. V. Efimov, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1959 | MR
[7] Joseph Diestel, Geometry of Banach spaces—selected topics, Lecture Notes in Mathematics, 485, Springer-Verlag, Berlin, 1975 | MR | Zbl
[8] H. Martini, K. J. Swanepoel, G. Weiss, “The geometry of Minkowski spaces – a survey”, Part I, Expo. Math., 19 (2001), 97–142 | MR | Zbl
[9] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, Matematicheskaya teoriya optimalnykh protsessov, fourth edition, Nauka, Moscow, 1983 | MR | Zbl
[10] P. K. Rashevskii, “About connecting two points of complete nonholonomic space by admissible curve”, Uch. Zapiski ped. inst. Libknexta, 3 (1938), 83–94
[11] Walter Rudin, Real and complex analysis, third edition, McGraw-Hill Book Co., New York, 1987 | MR | Zbl
[12] A. C. Thompson, Minkowski geometry, Encyclopedia of Mathematics and its Applications, 63, Cambridge University Press, Cambridge, 1996 | MR | Zbl