Geodesics in the Heisenberg group: an elementary approach
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 177-188.

Voir la notice de l'article provenant de la source Math-Net.Ru

We derive in an elementary way the shape of geodesics of the left invariant Carnot–Caratheodory–Finsler metrics on the Heisenberg group. The only existing proof of this result was given by V. N. Berestovskii, using the Pontryagin maximum principle.
Keywords: Heisenberg group, geodesic, Isoperimetric Problem.
@article{SEMR_2008_5_a12,
     author = {G. A. Noskov},
     title = {Geodesics in the {Heisenberg} group: an elementary approach},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {177--188},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a12/}
}
TY  - JOUR
AU  - G. A. Noskov
TI  - Geodesics in the Heisenberg group: an elementary approach
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 177
EP  - 188
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a12/
LA  - en
ID  - SEMR_2008_5_a12
ER  - 
%0 Journal Article
%A G. A. Noskov
%T Geodesics in the Heisenberg group: an elementary approach
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 177-188
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a12/
%G en
%F SEMR_2008_5_a12
G. A. Noskov. Geodesics in the Heisenberg group: an elementary approach. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 177-188. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a12/

[1] Siberian Math. J., 29:6 (1988), 887–897 | DOI | MR | Zbl

[2] Siberian Math. J., 35:1 (1994), 1–8 | DOI | MR

[3] Herbert Busemann, “The isoperimetric problem in the Minkowski plane”, Amer. J. Math., 69 (1947), 863–871 | DOI | MR | Zbl

[4] Isaac Chavel, Isoperimetric inequalities. Differential geometric and analytic perspectives, Cambridge Tracts in Mathematics, 145, Cambridge University Press, Cambridge, 2001 | MR | Zbl

[5] Wei-Liang Chow, “Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung”, Math. Ann., 117 (1939), 98–105 | MR | Zbl

[6] S. È. Con-Vossen, Nekotorye voprosy differentsialnoi geometrii v tselom, ed. N. V. Efimov, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1959 | MR

[7] Joseph Diestel, Geometry of Banach spaces—selected topics, Lecture Notes in Mathematics, 485, Springer-Verlag, Berlin, 1975 | MR | Zbl

[8] H. Martini, K. J. Swanepoel, G. Weiss, “The geometry of Minkowski spaces – a survey”, Part I, Expo. Math., 19 (2001), 97–142 | MR | Zbl

[9] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, Matematicheskaya teoriya optimalnykh protsessov, fourth edition, Nauka, Moscow, 1983 | MR | Zbl

[10] P. K. Rashevskii, “About connecting two points of complete nonholonomic space by admissible curve”, Uch. Zapiski ped. inst. Libknexta, 3 (1938), 83–94

[11] Walter Rudin, Real and complex analysis, third edition, McGraw-Hill Book Co., New York, 1987 | MR | Zbl

[12] A. C. Thompson, Minkowski geometry, Encyclopedia of Mathematics and its Applications, 63, Cambridge University Press, Cambridge, 1996 | MR | Zbl