Orthogonal systems in finite graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 151-176.

Voir la notice de l'article provenant de la source Math-Net.Ru

To a finite graph there corresponds a free partially commutative group: with the given graph as commutation graph. In this paper we construct an orthogonality theory for graphs and their corresponding free partially commutative groups. The theory developed here provides tools for the study of the structure of partially commutative groups, their universal theory and automorphism groups. In particular the theory is applied in this paper to the centraliser lattice of such groups.
@article{SEMR_2008_5_a11,
     author = {A. J. Duncan and I. V. Kazachkov and V. N. Remeslennikov},
     title = {Orthogonal systems in finite graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {151--176},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a11/}
}
TY  - JOUR
AU  - A. J. Duncan
AU  - I. V. Kazachkov
AU  - V. N. Remeslennikov
TI  - Orthogonal systems in finite graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 151
EP  - 176
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a11/
LA  - en
ID  - SEMR_2008_5_a11
ER  - 
%0 Journal Article
%A A. J. Duncan
%A I. V. Kazachkov
%A V. N. Remeslennikov
%T Orthogonal systems in finite graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 151-176
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a11/
%G en
%F SEMR_2008_5_a11
A. J. Duncan; I. V. Kazachkov; V. N. Remeslennikov. Orthogonal systems in finite graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 151-176. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a11/

[1] G. Birkhoff, Lattice Theory, American Mathematical Society Colloquium Publications, 25, Amer. Math. Soc., New York, 1948 | MR | Zbl

[2] V. Diekert and G. Rozenberg, The Book of Traces, World Scientific, 1995 | MR

[3] G. Duchamp and D. Krob, “Partially Commutative Magnus Transformations”, Internat. J. Algebra Comput., 3:1 (1993), 15–41 | DOI | MR | Zbl

[4] A. J. Duncan, I. V. Kazachkov and V. N. Remeslennikov, “Centraliser Dimension and Universal Classes of Groups”, Siberian Electronic Mathematical Reports, 3 (2006), 197–215 | MR | Zbl

[5] A. J. Duncan, I. V. Kazachkov and V. N. Remeslennikov, “Centraliser Dimension of Partially Commutative Groups”, Geometriae Dedicata, 120 (2006), 73–97 | DOI | MR | Zbl

[6] A. J. Duncan, I. V. Kazachkov and V. N. Remeslennikov,, Parabolic and Quasiparabolic Subgroups of Free Partially Commutative Groups, arXiv: math/0702431 | MR

[7] A. J. Duncan, I. V. Kazachkov and V. N. Remeslennikov,, Automorphisms of Free Partially Commutative Groups I: Stabilser of the Lattice of Parabolic Centralisers, in preparation

[8] A. J. Duncan, I. V. Kazachkov and V. N. Remeslennikov, Automorphisms of Free Partially Commutative Groups II, in preparation.

[9] E. S. Esyp, I. V. Kazachkov and V. N. Remeslennikov, “Divisibility Theory and Complexity of Algorithms for Free Partially Commutative Groups”, Cont. Math., 378, AMS, 2005, 319–348 | MR | Zbl

[10] S. Humphries, “On representations of Artin groups and the Tits conjecture”, J. Algebra, 169:3 (1994), 847–862 | DOI | MR | Zbl

[11] F. Buekenhout (ed.), Handbook of Incidence Geometry, Buildings and foundations, North-Holland, Amsterdam, 1995 | MR

[12] Michael R. Laurence, “A generating set for the automorphism group of a graph group”, J. London Math. Soc., 52 (1995), 318–334 | MR | Zbl

[13] A. Myasnikov and P. Shumyatsky, “Discriminating groups and $c$-dimension”, J. Group Theory, 7:1 (2004), 135–142 | DOI | MR | Zbl

[14] H. Servatius, “Automorphisms of graph groups”, J. Algebra, 126 (1989), 34–60 | DOI | MR | Zbl