Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2008_5_a11, author = {A. J. Duncan and I. V. Kazachkov and V. N. Remeslennikov}, title = {Orthogonal systems in finite graphs}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {151--176}, publisher = {mathdoc}, volume = {5}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a11/} }
TY - JOUR AU - A. J. Duncan AU - I. V. Kazachkov AU - V. N. Remeslennikov TI - Orthogonal systems in finite graphs JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2008 SP - 151 EP - 176 VL - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a11/ LA - en ID - SEMR_2008_5_a11 ER -
A. J. Duncan; I. V. Kazachkov; V. N. Remeslennikov. Orthogonal systems in finite graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 151-176. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a11/
[1] G. Birkhoff, Lattice Theory, American Mathematical Society Colloquium Publications, 25, Amer. Math. Soc., New York, 1948 | MR | Zbl
[2] V. Diekert and G. Rozenberg, The Book of Traces, World Scientific, 1995 | MR
[3] G. Duchamp and D. Krob, “Partially Commutative Magnus Transformations”, Internat. J. Algebra Comput., 3:1 (1993), 15–41 | DOI | MR | Zbl
[4] A. J. Duncan, I. V. Kazachkov and V. N. Remeslennikov, “Centraliser Dimension and Universal Classes of Groups”, Siberian Electronic Mathematical Reports, 3 (2006), 197–215 | MR | Zbl
[5] A. J. Duncan, I. V. Kazachkov and V. N. Remeslennikov, “Centraliser Dimension of Partially Commutative Groups”, Geometriae Dedicata, 120 (2006), 73–97 | DOI | MR | Zbl
[6] A. J. Duncan, I. V. Kazachkov and V. N. Remeslennikov,, Parabolic and Quasiparabolic Subgroups of Free Partially Commutative Groups, arXiv: math/0702431 | MR
[7] A. J. Duncan, I. V. Kazachkov and V. N. Remeslennikov,, Automorphisms of Free Partially Commutative Groups I: Stabilser of the Lattice of Parabolic Centralisers, in preparation
[8] A. J. Duncan, I. V. Kazachkov and V. N. Remeslennikov, Automorphisms of Free Partially Commutative Groups II, in preparation.
[9] E. S. Esyp, I. V. Kazachkov and V. N. Remeslennikov, “Divisibility Theory and Complexity of Algorithms for Free Partially Commutative Groups”, Cont. Math., 378, AMS, 2005, 319–348 | MR | Zbl
[10] S. Humphries, “On representations of Artin groups and the Tits conjecture”, J. Algebra, 169:3 (1994), 847–862 | DOI | MR | Zbl
[11] F. Buekenhout (ed.), Handbook of Incidence Geometry, Buildings and foundations, North-Holland, Amsterdam, 1995 | MR
[12] Michael R. Laurence, “A generating set for the automorphism group of a graph group”, J. London Math. Soc., 52 (1995), 318–334 | MR | Zbl
[13] A. Myasnikov and P. Shumyatsky, “Discriminating groups and $c$-dimension”, J. Group Theory, 7:1 (2004), 135–142 | DOI | MR | Zbl
[14] H. Servatius, “Automorphisms of graph groups”, J. Algebra, 126 (1989), 34–60 | DOI | MR | Zbl