Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2007_4_a9, author = {D. V. Lytkina and A. A. Kuznetsov}, title = {Recognizability by spectrum of the group $L_2(7)$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {136--140}, publisher = {mathdoc}, volume = {4}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a9/} }
D. V. Lytkina; A. A. Kuznetsov. Recognizability by spectrum of the group $L_2(7)$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 136-140. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a9/
[1] Unsolved problems of group theory. The Kourovka Notebook, 16-th edition, Novosibirsk, 2006 | MR
[2] V. D. Mazurov, “Groups with given spectrum”, Izvestiya Uralskogo gosudarstvennogo universiteta. Matematika i mekhanika, 36:7 (2005), 119–138 (in Russian) | MR | Zbl
[3] W. J. Shi, “A characteristic property of $PSL_2(7)$”, J. Austral. Math. Soc. Ser. A, 36:3 (1984), 354–356 | DOI | MR | Zbl
[4] V. P. Shunkov, “On periodic groups with an almost regular involution”, Algebra and Logic, 11:4 (1972), 260–272 | DOI | MR | Zbl
[5] J. G. Thompson, “Finite groups with fixed-point-free automorphisms of prime order”, Proc. Nat. Acad. Sci. U.S.A., 45 (1959), 578–581 | DOI | MR | Zbl
[6] D. V. Lytkina, “Structure of a group with elements of order at most 4”, Siberian Math. J., 48:2 (2007), 268–272 | DOI | MR
[7] A. A. Kuznetsov, “About recognizability of the group $L_2(7)$ by spectrum”, Siberian Electronic Math. Reports, 2 (2005), 250–252 (in Russian) http://semr.math.nsc.ru | MR | Zbl
[8] B. Huppert, Endliche Gruppen, v. I, Springer Verlag, 1979
[9] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.4.6, 2005, http://www.gap-system.org