A~bound on correlation immunity
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 133-135

Voir la notice de l'article provenant de la source Math-Net.Ru

A new bound on correlation immunity of non-constant unbalanced Boolean functions is proved. The bound is applied to obtain a new necessary condition for existence of a perfect coloring of the hypercube with given parameters. The new bound is stronger than the bounds previously obtained by Bierbrauer and Tarannikov, and is reached on an infinite class of examples.
@article{SEMR_2007_4_a8,
     author = {D. G. Fon-Der-Flaass},
     title = {A~bound on correlation immunity},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {133--135},
     publisher = {mathdoc},
     volume = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a8/}
}
TY  - JOUR
AU  - D. G. Fon-Der-Flaass
TI  - A~bound on correlation immunity
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2007
SP  - 133
EP  - 135
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2007_4_a8/
LA  - en
ID  - SEMR_2007_4_a8
ER  - 
%0 Journal Article
%A D. G. Fon-Der-Flaass
%T A~bound on correlation immunity
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2007
%P 133-135
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2007_4_a8/
%G en
%F SEMR_2007_4_a8
D. G. Fon-Der-Flaass. A~bound on correlation immunity. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 133-135. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a8/