Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2007_4_a8, author = {D. G. Fon-Der-Flaass}, title = {A~bound on correlation immunity}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {133--135}, publisher = {mathdoc}, volume = {4}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a8/} }
D. G. Fon-Der-Flaass. A~bound on correlation immunity. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 133-135. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a8/
[1] J. Bierbrauer, “Bounds on orthogonal arrays and resilient functions”, Journal of Combinatorial Designs, 3 (1995), 179–183 | DOI | MR | Zbl
[2] D. Fon-Der-Flaass, “Perfect colorings of a hypercube”, Siberian Math. J. (to appear)
[3] C. Godsil, “Equitable partitions”, Combinatorics, Paul Erdős is Eighty, v. 1, Keszthely (Hungary), 1993, 173–192 | MR | Zbl
[4] D. Kirienko, “On new infinite family of high order correlation immune unbalanced Boolean functions”, Proceedings of 2002 IEEE International Symposium on Information Theory ISIT'2002 (Lausanne, Switzerland, June 30–July 5, 2002), 465
[5] Tarannikov Yu., Kirienko D., “Spectral analysis of high order correlation immune functions”, Proceedings of 2001 IEEE International Symposium on Information Theory ISIT'2001 (Washington, DC, USA, June 2001), 69
[6] Tarannikov Yu., Korolev P., Botev A., “Autocorrelation coefficients and correlation immunity of Boolean functions”, Advances in cryptology – ASIACRYPT 2001, Proceedings of Asiacrypt 2001 (Gold Coast, Australia, December 9–13, 2001), Lect. Notes in Comp. Sci., 2248, Springer-Verlag, 2001, 460–479 | MR | Zbl
[7] Tarannikov Yu., On resilient Boolean functions with maximal possible nonlinearity, Report 2000/005, March 2000, 18 pp. ; Cryptology ePrint archive http://eprint.iacr.org | MR