Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2007_4_a4, author = {E. Yu. Daniyarova}, title = {The $Q$-ideals in polynomial rings and the $Q$-modules over polynomial rings}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {64--84}, publisher = {mathdoc}, volume = {4}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a4/} }
E. Yu. Daniyarova. The $Q$-ideals in polynomial rings and the $Q$-modules over polynomial rings. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 64-84. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a4/
[1] E. Yu. Daniyarova, Osnovy algebraicheskoi geometrii nad algebrami Li, Preprint No 131, RAN Sib. Otd-nie, In-t matematiki, Novosibirsk, 2004, 33 pp.
[2] E. Yu. Daniyarova, I. V. Kazachkov, V. N. Remeslennikov, “Algebraicheskaya geometriya nad svobodnoi metabelevoi algebroi Li I: $U$ algebry i universalnye klassy”, Fundam. i prikl. mat., 9:3 (2003), 37–63 http://mech.math.msu.su/textasciitilde fpm/rus/k03/k033/k03304h.htm | MR | Zbl
[3] E. Yu. Daniyarova, I. V. Kazachkov, V. N. Remeslennikov, “Algebraicheskaya geometriya nad svobodnoi metabelevoi algebroi Li II: Sluchai konechnogo polya”, Fundam. i prikl. mat., 9:3 (2003), 65–87 http://mech.math.msu.su/textasciitilde fpm/rus/k03/k033/k03305h.htm | MR | Zbl
[4] E. Yu. Daniyarova, Algebraicheskaya geometriya nad svobodnoi metabelevoi algebroi Li III: $Q$ algebry i koordinatnye algebry algebraicheskikh mnozhestv, Preprint, Izd-vo OmGU, Omsk, 2005, 130 pp.
[5] E. Yu. Daniyarova, I. V. Kazachkov, V. N. Remeslennikov, Algebraicheskaya geometriya nad svobodnoi metabelevoi algebroi Li I: $U$ algebry i $A$ moduli, Preprint No 34, OmGAU, Omsk, 2001, 25 pp.
[6] S. Leng, Algebra, Mir, Moskva, 1968
[7] N. Burbaki, Kommutativnaya algebra, Mir, Moskva, 1971