The $Q$-ideals in polynomial rings and the $Q$-modules over polynomial rings
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 64-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we introduce the new categories of ideals in commutative rings of polynomials and of modules over rings of polynomials. This material proposes the definitions of linear ideal, $Q$ ideal of ring of commutative polynomials over a field, $Q$ radical, linear homomorphism between rings of polynomials and investigates the features of such objects. We cast the definition of $Q$ module over a ring of polynomials and examine the structure of such modules. In particular, it is developed the theory of primary decomposition of $Q$ modules. Also we prove that arbitrary $Q$ module can be decomposed in direct sum of torsion-free modules.
@article{SEMR_2007_4_a4,
     author = {E. Yu. Daniyarova},
     title = {The $Q$-ideals in polynomial rings and the $Q$-modules over polynomial rings},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {64--84},
     publisher = {mathdoc},
     volume = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a4/}
}
TY  - JOUR
AU  - E. Yu. Daniyarova
TI  - The $Q$-ideals in polynomial rings and the $Q$-modules over polynomial rings
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2007
SP  - 64
EP  - 84
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2007_4_a4/
LA  - ru
ID  - SEMR_2007_4_a4
ER  - 
%0 Journal Article
%A E. Yu. Daniyarova
%T The $Q$-ideals in polynomial rings and the $Q$-modules over polynomial rings
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2007
%P 64-84
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2007_4_a4/
%G ru
%F SEMR_2007_4_a4
E. Yu. Daniyarova. The $Q$-ideals in polynomial rings and the $Q$-modules over polynomial rings. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 64-84. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a4/

[1] E. Yu. Daniyarova, Osnovy algebraicheskoi geometrii nad algebrami Li, Preprint No 131, RAN Sib. Otd-nie, In-t matematiki, Novosibirsk, 2004, 33 pp.

[2] E. Yu. Daniyarova, I. V. Kazachkov, V. N. Remeslennikov, “Algebraicheskaya geometriya nad svobodnoi metabelevoi algebroi Li I: $U$ algebry i universalnye klassy”, Fundam. i prikl. mat., 9:3 (2003), 37–63 http://mech.math.msu.su/textasciitilde fpm/rus/k03/k033/k03304h.htm | MR | Zbl

[3] E. Yu. Daniyarova, I. V. Kazachkov, V. N. Remeslennikov, “Algebraicheskaya geometriya nad svobodnoi metabelevoi algebroi Li II: Sluchai konechnogo polya”, Fundam. i prikl. mat., 9:3 (2003), 65–87 http://mech.math.msu.su/textasciitilde fpm/rus/k03/k033/k03305h.htm | MR | Zbl

[4] E. Yu. Daniyarova, Algebraicheskaya geometriya nad svobodnoi metabelevoi algebroi Li III: $Q$ algebry i koordinatnye algebry algebraicheskikh mnozhestv, Preprint, Izd-vo OmGU, Omsk, 2005, 130 pp.

[5] E. Yu. Daniyarova, I. V. Kazachkov, V. N. Remeslennikov, Algebraicheskaya geometriya nad svobodnoi metabelevoi algebroi Li I: $U$ algebry i $A$ moduli, Preprint No 34, OmGAU, Omsk, 2001, 25 pp.

[6] S. Leng, Algebra, Mir, Moskva, 1968

[7] N. Burbaki, Kommutativnaya algebra, Mir, Moskva, 1971