L\"obell manifolds revised
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 605-609

Voir la notice de l'article provenant de la source Math-Net.Ru

The first example of a closed orientable hyperbolic $3$-manifold was constructed by F. Löbell in 1931. It was an affirmative answer to the Köbe question on the existence of hyperbolic $3$-forms. In the present paper we give a short survey of some related results and obtain a simple analytic formula for the volume of the Löbell manifold as well as for volumes of Humbert manifolds.
@article{SEMR_2007_4_a32,
     author = {A. D. Mednykh and A. Yu. Vesnin},
     title = {L\"obell manifolds revised},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {605--609},
     publisher = {mathdoc},
     volume = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a32/}
}
TY  - JOUR
AU  - A. D. Mednykh
AU  - A. Yu. Vesnin
TI  - L\"obell manifolds revised
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2007
SP  - 605
EP  - 609
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2007_4_a32/
LA  - en
ID  - SEMR_2007_4_a32
ER  - 
%0 Journal Article
%A A. D. Mednykh
%A A. Yu. Vesnin
%T L\"obell manifolds revised
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2007
%P 605-609
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2007_4_a32/
%G en
%F SEMR_2007_4_a32
A. D. Mednykh; A. Yu. Vesnin. L\"obell manifolds revised. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 605-609. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a32/