L\"obell manifolds revised
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 605-609.

Voir la notice de l'article provenant de la source Math-Net.Ru

The first example of a closed orientable hyperbolic $3$-manifold was constructed by F. Löbell in 1931. It was an affirmative answer to the Köbe question on the existence of hyperbolic $3$-forms. In the present paper we give a short survey of some related results and obtain a simple analytic formula for the volume of the Löbell manifold as well as for volumes of Humbert manifolds.
@article{SEMR_2007_4_a32,
     author = {A. D. Mednykh and A. Yu. Vesnin},
     title = {L\"obell manifolds revised},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {605--609},
     publisher = {mathdoc},
     volume = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a32/}
}
TY  - JOUR
AU  - A. D. Mednykh
AU  - A. Yu. Vesnin
TI  - L\"obell manifolds revised
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2007
SP  - 605
EP  - 609
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2007_4_a32/
LA  - en
ID  - SEMR_2007_4_a32
ER  - 
%0 Journal Article
%A A. D. Mednykh
%A A. Yu. Vesnin
%T L\"obell manifolds revised
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2007
%P 605-609
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2007_4_a32/
%G en
%F SEMR_2007_4_a32
A. D. Mednykh; A. Yu. Vesnin. L\"obell manifolds revised. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 605-609. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a32/

[1] O. Antolin–Camarena, G. R. Maloney, R. K. W. Roeder, Computing arithmetic invariants for hyperbolic reflection groups, arXiv: 0708.2109 | MR

[2] A. Garrison, R. Scott, “Small covers of the dodecahedron and the 120–cell”, Proc. Amer. Math. Soc., 131:3 (2003), 963–971 | DOI | MR | Zbl

[3] R. Hidalgo, G. Rosenberger, “Torsion free commutator subgroups of generalized Coxeter groups”, Results in Mathematics, 48 (2005), 50–64 | MR | Zbl

[4] T. Inoue, Organizing volumes of right–angled hyperbolic polyhedra, Ph.D. thesis, University of California, Berkeley, 2007 | MR | Zbl

[5] F. Löbell, “Beispiele geschlossene dreidimensionaler Clifford–Kleinischer Räume negative Krümmung”, Ber. Verh. Sächs. Akad. Lpz., Math.–Phys. Kl., 83 (1931), 168–174

[6] A. Mednykh, “Automorphism groups of three–dimensional hyperbolic manifolds”, Sov. Math. Dokl., 32 (1985), 633–636 | Zbl

[7] A. Mednykh, J. Parker, A. Vesnin, “On hyperbolic polyhedra arising as convex cores of quasi–Fuchsian punctured torus groups”, Bol. Soc. Mat. Mexicana (3), 10 (2004), 357–381 | MR | Zbl

[8] A. Mednykh, A. Vesnin, “On three–dimensional hyperbolic manifolds of Löbell type”, Complex analysis and applications'85 (Varna, 1985), Publ. House Bulgar. Acad. Sci., Sofia, 1986, 440–446 | MR

[9] A. Mednykh, A. Vesnin, “Colourings of polyhedra and hyperelliptic 3–manifolds”, Recent advances in group theory and low–dimensional topology (Pusan, 2000), Res. Exp. Math., 27, Heldermann, Lemgo, 2003, 123–131 | MR | Zbl

[10] J. Milnor, “The Schläfli differential equality”: J. Milnor, Collected papers, v. 1, Geometry, Publish or Perish, Houston, 1994, 281–295 | MR

[11] I. Rivin, “A characterization of ideal polyhedra in hyperbolic $3$-space”, Ann. of Math. (2), 143:1 (1996), 51–70 | DOI | MR | Zbl

[12] R. K. W. Roeder, Constructing hyperbolic polyhedra using Newton's Method (to appear) , arXiv: math/0603552

[13] T. Salenius, “Über dreidimensionale geschlossene Räume konstanter negative Krümmung”, Den 11–te Skandinavske Matematikerkongress (Trondheim, 1949), 107–112 | MR | Zbl

[14] H. Seifer, C. Weber, “Die beiden Dodekaederräume”, Math. Z., 37 (1933), 237–253 | DOI | MR

[15] D. Surchat, Infinité de valeurs propres sous le spectre essentiel du Laplacien d'un graphe, Présentée au Départment de Mathématiques École Polytechnique Fédérale de Lausanne pour l'obtention du grade de docteur ès sciences, Lausanne, EPFL, 1993, 103 pp.

[16] M. Takahashi, “On the presentations of the fundamental groups of 3-manifolds”, Tsukuba J. Math., 13 (1989), 1175–1189 | MR

[17] A. Vesnin, “Three–dimensional hyperbolic manifolds of Löbell type”, Siberian Math. J., 28:5 (1987), 731–734 | DOI | MR | Zbl

[18] A. Vesnin, “Three–dimensional hyperbolic manifolds with a common fundamental polyhedron”, Math. Notes, 49:5–6 (1991), 575–577 | MR | Zbl

[19] A. Vesnin, “Volumes of three–dimensional hyperbolic Löbell manifolds”, Math. Notes, 64:1 (1998), 15–19 | DOI | MR

[20] A. Vesnin, A. Mednykh, “Three–dimensional hyperelliptic manifolds and Hamiltonian graphs”, Siberian Math. J., 40:4 (1999), 628–643 | DOI | MR

[21] A. Vesnin, S. Matveev, C. Petronio, “Two–sided complexity bounds for Löbell manifolds”, Doklady Mathematics, 76:2 (2007), 689–691 | DOI | Zbl

[22] E. B. Vinberg, Geometry II: spaces of constant curvature, Encyclopedia of Mathematical Sciences, 29, Springer–Verlag, Berlin, 1993 | MR | Zbl