Positivеly prime models over a~normal basic set
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 596-604.

Voir la notice de l'article provenant de la source Math-Net.Ru

For given universal domain $C$, a set $\mathrm{BF}$ of normal formulas, and $A\subseteq C$, we construct substructures $B$ of $C$ with the following properties: (a) $A\subseteq B$; (b) for each $a\in B$ the type ${\rm tp}(a;(B\setminus\{a\}))$ is based by formulas from $\mathrm{BF}$. The existence and uniqueness theorems are proven. This is a generalization of the known results on the injective hulls in the variety of the modules in case when the theory $\mathrm{Th}(C^\omega)$ is stable.
@article{SEMR_2007_4_a31,
     author = {E. A. Palyutin},
     title = {Positiv{\cyre}ly prime models over a~normal basic set},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {596--604},
     publisher = {mathdoc},
     volume = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a31/}
}
TY  - JOUR
AU  - E. A. Palyutin
TI  - Positivеly prime models over a~normal basic set
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2007
SP  - 596
EP  - 604
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2007_4_a31/
LA  - ru
ID  - SEMR_2007_4_a31
ER  - 
%0 Journal Article
%A E. A. Palyutin
%T Positivеly prime models over a~normal basic set
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2007
%P 596-604
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2007_4_a31/
%G ru
%F SEMR_2007_4_a31
E. A. Palyutin. Positivеly prime models over a~normal basic set. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 596-604. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a31/

[1] S. Shelah, Classification theory and the number of non-isomorphic models, North-Holland, Amsterdam, 1978 | MR | Zbl

[2] E. A. Palyutin, “Kategorichnye khornovy klassy. 1”, Algebra i logika, 19:5 (1980), 582–614 | MR | Zbl

[3] E. A. Palyutin, “Primitivno svyaznye teorii”, Algebra i logika, 39:2 (2000), 145–169 | MR | Zbl