Group-theoretical solutions to gas dynamic equations generated by threedimensional Lie subalgebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 553-595
Cet article a éte moissonné depuis la source Math-Net.Ru
We study group-theoretical solutions to the dynamic equations of polytropic gas. We give a complete list of invariant and partially invariant solutions generated by $3$-dimensional subalgebras of symmetry Lie algebra $L_{13}$. There are $146$ different invariant solutions, $61$ partially invariant solutions, and $12$ types of barochronic solutions in this list. This result is applicable in gas dynamics, aerodynamics, and physics of atmosphere.
@article{SEMR_2007_4_a30,
author = {A. A. Cherevko},
title = {Group-theoretical solutions to gas dynamic equations generated by threedimensional {Lie} subalgebras},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {553--595},
year = {2007},
volume = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a30/}
}
TY - JOUR AU - A. A. Cherevko TI - Group-theoretical solutions to gas dynamic equations generated by threedimensional Lie subalgebras JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2007 SP - 553 EP - 595 VL - 4 UR - http://geodesic.mathdoc.fr/item/SEMR_2007_4_a30/ LA - ru ID - SEMR_2007_4_a30 ER -
A. A. Cherevko. Group-theoretical solutions to gas dynamic equations generated by threedimensional Lie subalgebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 553-595. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a30/
[1] L. V. Ovsyannikov, Lektsii po osnovam gazovoi dinamiki, Nauka, M., 1981 | MR | Zbl
[2] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR
[3] S. V. Golovin, Optimalnaya sistema podalgebr dlya algebry Li operatorov, dopuskaemykh uravneniyami gazovoi dinamiki v sluchae politropnogo gaza, Preprint RAN. Sib. otd-nie. In-t gidrodinamiki, No 5-96
[4] A. P. Chupakhin, Barokhronnye dvizheniya gaza: obschie svoistva i podmodeli tipov (1,2) i (1,1), Preprint RAN. Sib. otd-nie. In-t gidrodinamiki, No 4-98
[5] L. V. Ovsyannikov, “Osobyi vikhr”, PMTF, 36:3 (1995), 45–52 | MR | Zbl
[6] A. A. Cherevko, A. P. Chupakhin, Statsionarnyi vikhr Ovsyannikova, Prepr. SO RAN, In-t gidrodinamiki, No 1, 2005