On existence of the universal rational structures for groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 52-63

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every group containing the free abelian subgroup of rank $2$ does not admit an universal rational structure. The negative answer to the question by Gersten and Short on the existence for the free abelian of rank $2$ group of such rational structure $L$ for which every subgroup is $L$-rational is derived.
@article{SEMR_2007_4_a3,
     author = {O. V. Grigorenko and V. A. Roman'kov},
     title = {On existence of the universal rational structures for groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {52--63},
     publisher = {mathdoc},
     volume = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a3/}
}
TY  - JOUR
AU  - O. V. Grigorenko
AU  - V. A. Roman'kov
TI  - On existence of the universal rational structures for groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2007
SP  - 52
EP  - 63
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2007_4_a3/
LA  - ru
ID  - SEMR_2007_4_a3
ER  - 
%0 Journal Article
%A O. V. Grigorenko
%A V. A. Roman'kov
%T On existence of the universal rational structures for groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2007
%P 52-63
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2007_4_a3/
%G ru
%F SEMR_2007_4_a3
O. V. Grigorenko; V. A. Roman'kov. On existence of the universal rational structures for groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 52-63. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a3/