On existence of the universal rational structures for groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 52-63
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that every group containing the free abelian subgroup of rank $2$ does not admit an universal
rational structure. The negative answer to the question by Gersten and Short on the existence for the free abelian of rank $2$ group of such rational structure $L$ for which every subgroup is $L$-rational is derived.
@article{SEMR_2007_4_a3,
author = {O. V. Grigorenko and V. A. Roman'kov},
title = {On existence of the universal rational structures for groups},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {52--63},
publisher = {mathdoc},
volume = {4},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a3/}
}
TY - JOUR AU - O. V. Grigorenko AU - V. A. Roman'kov TI - On existence of the universal rational structures for groups JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2007 SP - 52 EP - 63 VL - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2007_4_a3/ LA - ru ID - SEMR_2007_4_a3 ER -
O. V. Grigorenko; V. A. Roman'kov. On existence of the universal rational structures for groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 52-63. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a3/