@article{SEMR_2007_4_a3,
author = {O. V. Grigorenko and V. A. Roman'kov},
title = {On existence of the universal rational structures for groups},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {52--63},
year = {2007},
volume = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a3/}
}
O. V. Grigorenko; V. A. Roman'kov. On existence of the universal rational structures for groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 52-63. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a3/
[1] S. M. Gersten, H. B. Short, “Rational subgroups of biautomatic groups”, Annals of Mathematics, 134 (1991), 125–158 | DOI | MR | Zbl
[2] G. A. Bazhenova, “O ratsionalnykh mnozhestvakh v konechno porozhdennykh nilpotentnykh gruppakh”, Algebra i logika, 39:4 (2000), 379–394 | MR | Zbl
[3] G. A. Bazhenova, “Ob odnom klasse grupp, zamknutykh otnositelno svobodnykh proizvedenii”, Sibirskii matematicheskii zhurnal, 41:4 (2000), 740–743 | MR | Zbl
[4] G. A. Bazhenova, “Rational sets in polycyclic groups”, Sb.nauchnykh trudov mezhdunarodnoi konferentsii “Kombinatornye i vychislitelnye metody v matematike”, OmGU, Omsk, 1999, 76–81
[5] R. H. Gilman, “Formal languages and infinite groups”, DIMACS series in discrete mathematics and theoretical computer science, 25 (1996), 27–51 | MR | Zbl
[6] V. A. Roman'kov, “On the occurence problem for rational subsets of a group”, Sb. trudov mezhdunarodnoi konferentsii “Kombinatornye i vychislitelnye metody v matematike”, OmGU, Omsk, 1999, 235–242
[7] D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, W. P. Thurston, Word processing in groups, Jones and Bartlett, Boston, London, 1992 | MR | Zbl
[8] O. V. Grigorenko, “Ob universalnykh ratsionalnykh yazykakh otnositelno dannoi gruppy”, Vestnik Omskogo universiteta, 2005, no. 4, 21–23 | MR
[9] R. Lindon, P. Shupp, Kombinatornaya teoriya grupp, Mir, M., 1980 | MR
[10] S. Eilenberg, Automata Languages, and Machines, v. A, Academic Press, New-York, London, 1974 ; v. B, 1976 | MR | Zbl