Orthogonalization, factorization, and identification as to the theory of recursive equations in linear algebra
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 482-503.

Voir la notice de l'article provenant de la source Math-Net.Ru

We outline theoretical foundations for the recurrent algorithms of computational linear algebra based on counter orthogonalization processes over an ordered system of vectors; we also show the importance of these processes for analysis and applications. We present some important applications of counter orthogonalization processes related to some approximation problems and signal processing as well as recent applications related to the so called homogeneous structures and Toeplitz systems. In particular, these applications contain operators and inversion of matrices, $\mathbb{QDR}$- and $\mathbb{QDL}$-decompositions, $\mathbb{RDL}$- and $\mathbb{LDR}$-factorizations, solutions of integral equations and of systems of algebraic equations, signal estimation on based on approximation models in the form of differential and difference equations and variational identification (coefficients estimation) of the latter.
@article{SEMR_2007_4_a27,
     author = {A. O. Yegorshin},
     title = {Orthogonalization, factorization, and identification as to the theory of recursive equations in linear algebra},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {482--503},
     publisher = {mathdoc},
     volume = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a27/}
}
TY  - JOUR
AU  - A. O. Yegorshin
TI  - Orthogonalization, factorization, and identification as to the theory of recursive equations in linear algebra
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2007
SP  - 482
EP  - 503
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2007_4_a27/
LA  - en
ID  - SEMR_2007_4_a27
ER  - 
%0 Journal Article
%A A. O. Yegorshin
%T Orthogonalization, factorization, and identification as to the theory of recursive equations in linear algebra
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2007
%P 482-503
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2007_4_a27/
%G en
%F SEMR_2007_4_a27
A. O. Yegorshin. Orthogonalization, factorization, and identification as to the theory of recursive equations in linear algebra. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 482-503. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a27/

[1] A. O. Yegorshin, “On one projection problem in Hardy space”, Mathematics in Applications, International Conference honoring academician Sergei K. Godunov, Abstract (August 25–28 1999, Novosibirsk), Novosibirsk State University, Novosibirsk; IM SB RAN et al., 1999, 159–161

[2] A. O. Yegorshin, “On one estimation method of modelling equation coefficients for sequences”, Siberian Zhournal of Industrial Mathematics, 3:2 (2000), 78–96 (In Russian)

[3] L. Ljung, T. Kailath, and B. Friedlander, “Scattering theory and linear least squares estimation. Part I: Continuous-time problem”, Proc. IEEE, 64:1 (1976), 131–139 | DOI | MR

[4] B. Friedlander, T. Kailath, and L. Ljung, “Scattering theory and linear least squares estimation. Part II: Discrete-time Problems”, J. Franklin Inst., 301:1–2 (1976), 71–82 | DOI | MR | Zbl

[5] R. Redheffer, “On the relation of transmission–line theory to scattering and transfer”, J. Math. Phys., 41 (1962), 1–41 | MR | Zbl

[6] R. Redheffer, “Difference equations and functional equation in transmission–line theory”, Modern Mathematics for the Engineer, chapter 12, ed. E. F. Beckenbach, McGraw–Hill, New York, 1961 | MR

[7] V. A. Ambarzumian, “Diffuse reflection of light by foggy medium”, Dokl. Akad. Nauk SSSR, 38:8 (1943), 257–261 | MR

[8] S. Chandrasekhar, “On radiate equilibrium of stellar atmosphere”, Part XXI, Astrophys. J., 106 (1947), 152–216 ; Part XXII, 107 (1948), 48–72 | DOI | MR | DOI | MR

[9] E. A. Robinson, “Spectral approach to geophisical inversion by Lorentz, Fourier, and Radon transforms”, Proc. IEEE, 70:9 (1976), 1039–1054 | DOI

[10] R. A. Wiggins, E. A. Robinson, “Recursive solution to the multichannel filtering problem”, J. Geophys. Res., 70 (1965), 1885–1891 | DOI | MR

[11] A. Lindquist, “Optimal filtering of continuous–time stationary processes by means of the backward innovation process”, SIAM J. Control, 12:4 (1974), 747–754 | DOI | MR | Zbl

[12] A. Lindquist, “A new algorithm for optimal filtering of discrete-time stationary processes”, SIAM J. Control, 12:4 (1974), 736–746 | DOI | MR | Zbl

[13] T. Kailath, “Some new algorithms for reqursive estimation in constant linear system”, IEEE Trans. Inform. Theory, 19:6 (1973), 750–760 | DOI | MR | Zbl

[14] T. Kailath, “Some new result and insights in linear least–squares estimation”, Proceedings of the IEEE-USSR Joint Workshop on Information Theory (Moscow, 1975), Inst. Electr. Electron. Engrs., New York, 1976., 97–104 ; rept. with correction in T. Kailath, Lectures in Linear–Least–Squares Estimation, Springer–Verlag, Berlin, New York, 1978 | MR | Zbl

[15] T. Kailath, “Some alternatives in recurcive estimation”, Int. J. Control, 32:2 (1980), 311–328 | DOI | MR | Zbl

[16] A. O. Yegorshin, “Least square method and fast algorithms of identification and filtration (VI Method)”, Avtometriya, 1 (1988), 30–42 (In Russian)

[17] A. O. Yegorshin, “On one variational problem of the mathematical modelling and parametrical identification”, Proceeding of the IASTED International Conference Automation, Control, and Information Technology (ACIT–2002, Novosibirsk, Russia, June 10–13 2002), ACTA Press, Anaheim, Calgary, Zurich, 2002, 267–272

[18] N. I. Ahiezer, The Classical Moment Problem, Hafner Publishing Company, New York, 1965 | MR

[19] U. Grenander, G. Szegio, Toeplitz Forms and Their Applications, Univ. of California Press, Berkeley, California, 1958 | MR | Zbl

[20] I. C. Gohberg, M. G. Krein, Theory of Volterra Operators in Hilbert Space, Transl. of Mathematical Monographs, 28, Amer. Math. Soc., Providence, Rhode Island, 1970 | MR

[21] N. Levinson, “The Wiener RMS (root–mean–square) error criterion in filter design and prediction”, J. Math. Phys., 25 (1947), 261–278 | MR

[22] M. G. Krein, “On integral equations leading to second–order differential equations”, Doklady Akad. Nauk SSSR, 97:1 (1955), 21–24 | MR

[23] M. G. Krein, “The continuous analogues of theorems on polynomials orthogonal on the unit circle”, Dokl. Akad. Nauk SSSR, 105:4 (1955), 637–640 | MR

[24] B. Friedlander, T. Kailath, M. Morf, L. Ljung, “Extended Levinson and Chandrasekhar equations for general discret–time linear estimation problem”, IEEE Trans. Automat. Control, 23:4 (1978), 653–659 | DOI | Zbl

[25] T. Kailath, L. Ljung, M. Morf, “Generalized Krein–Levinson equations for efficient calculation of Fredholm resolvents of nondisplacement kernals”, Topics in Functional Analysis, Essays Deducated to M. G. Krein on the Occasion of His 70th Birthday, Advances in Mathematics Supplementary Studies, 3, eds. I. Gohberg, and M. Kac, Academic Press, New York, San Francisco, London, 1978, 169–184 | MR

[26] B. Friedlander, “Lattice filter for adaptive processing”, Proc. IEEE, 70:8 (1982), 829–867 | DOI

[27] D. Lee, B. Friedlander, M. Morf, “Recursive ladder algorithms for ARMA modeling”, Proc. 19th IEEE Conf. Decision and Control (Albuquerce, NM, Dec. 1980), Albuquerce, NM, 1980, 1225–1241; IEEE Trans.Automat. Contr., 27 (1982), 753–754 | DOI | MR

[28] A. O. Egorshin (Yegorshin), A. A. Lomov, “Variational identification and filtration via fast algorithms”, Prep. 8-IFAC/IFORS Symp. Identification and System Parameter Estimation (Beijing, China, August 27–31 1988), v. 2, Pergamon Press, Beijing, China and Oxford, New York, 1988, 665–671

[29] A. O. Yegorshin, “Parameters optimisation of the stationary models in unitary space”, Automatica and Remote Control, 65:12 (2004), 1885–1903 | DOI | MR

[30] A. O. Yegorshin, “Variational discretization, and identification of linear stationary differential equations”, Proc. III International Conf. System Identification and Control Problems (SICPRO'04, January 28–30 2004, Moscow), Institute of Control Sciences, Moscow, 2004, 1824–1883 (In Russian)

[31] A. O. Yegorshin, “Numerical closed methods of linear objects identification”, Optimal and Selfadjasting Systems (Optimal'nye i Samonastraivayushiesia sistemy), ed. V. M. Alexandrov, IAE SB SSSR, Novosibirsk, 1971, 40–53 (In Russian)

[32] V. P. Budyanov, A. O. Yegorshin, N. P. Philippova, “On solving some problems of dynamic processes analysis based on experimental data with the help computers”, Problems of constracting scientific investigation automation (Voprosy postroeniya sistem avtomatizatshii nauchnyh issledovaniy), ed. A. M. Iskol'dskyi, IAE SB SSSR, Novosibirsk, 1974, 47–66 (In Russian)

[33] A. O. Egorshin (Yegorshin),, “Identification, modelling and adaptation (On optimal identification and modelling problem)”, Identification and System Parameter Estimation, Proc. IV IFAC Symp. (Tbilisi, September 21–27 1976), 3, North–Holland Publ. Co, Amsterdam, New York, Oxford, 1978, 2143–2154