Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2007_4_a26, author = {A. A. Mishchenko and A. V. Treyer}, title = {Commuting graphs for partially commutative nilpotent $\mathbb Q$-groups of class~$2$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {460--481}, publisher = {mathdoc}, volume = {4}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a26/} }
TY - JOUR AU - A. A. Mishchenko AU - A. V. Treyer TI - Commuting graphs for partially commutative nilpotent $\mathbb Q$-groups of class~$2$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2007 SP - 460 EP - 481 VL - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2007_4_a26/ LA - ru ID - SEMR_2007_4_a26 ER -
%0 Journal Article %A A. A. Mishchenko %A A. V. Treyer %T Commuting graphs for partially commutative nilpotent $\mathbb Q$-groups of class~$2$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2007 %P 460-481 %V 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2007_4_a26/ %G ru %F SEMR_2007_4_a26
A. A. Mishchenko; A. V. Treyer. Commuting graphs for partially commutative nilpotent $\mathbb Q$-groups of class~$2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 460-481. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a26/
[1] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1982, 288 pp. | MR | Zbl
[2] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, M., 1980 | MR
[3] Evgenii S. Esyp, Ilia V. Kazatchkov, Vladimir N. Remeslennikov, “Divisibility Theory and Complexity of Algorithms for Free Partially Commutative Groups”, Groups, Languages, Algorithms, Contemp. Mathematics, 378, 2005, 319–348 | MR | Zbl
[4] Andrew J. Duncan, Ilia V. Kazatchkov, Vladimir N. Remeslennikov, “Centraliser Dimension and Universal Classes of Groups”, Proceedings of the LMS, submitted
[5] R. Brauer, K. A. Fowler, “On groups of even order”, Ann. Math., 62 (1955), 565–583 | DOI | MR | Zbl
[6] C. Bates, D. Bundy, S. Perkins, P. Rowley, “Commuting Involution Graphs for Symmetric Groups”, J. Algebra, 266 (2003), 133–153 | DOI | MR | Zbl