Commuting graphs for partially commutative nilpotent $\mathbb Q$-groups of class~$2$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 460-481.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma$ be a finite graph and $G_\Gamma$ be a partially commutative nilpotent group of class $2$ corresponding to graph $\Gamma$. We investigate commuting graphs and logic formulas for $G_\Gamma$ associated with them.
@article{SEMR_2007_4_a26,
     author = {A. A. Mishchenko and A. V. Treyer},
     title = {Commuting graphs for partially commutative nilpotent $\mathbb Q$-groups of class~$2$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {460--481},
     publisher = {mathdoc},
     volume = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a26/}
}
TY  - JOUR
AU  - A. A. Mishchenko
AU  - A. V. Treyer
TI  - Commuting graphs for partially commutative nilpotent $\mathbb Q$-groups of class~$2$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2007
SP  - 460
EP  - 481
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2007_4_a26/
LA  - ru
ID  - SEMR_2007_4_a26
ER  - 
%0 Journal Article
%A A. A. Mishchenko
%A A. V. Treyer
%T Commuting graphs for partially commutative nilpotent $\mathbb Q$-groups of class~$2$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2007
%P 460-481
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2007_4_a26/
%G ru
%F SEMR_2007_4_a26
A. A. Mishchenko; A. V. Treyer. Commuting graphs for partially commutative nilpotent $\mathbb Q$-groups of class~$2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 460-481. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a26/

[1] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1982, 288 pp. | MR | Zbl

[2] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, M., 1980 | MR

[3] Evgenii S. Esyp, Ilia V. Kazatchkov, Vladimir N. Remeslennikov, “Divisibility Theory and Complexity of Algorithms for Free Partially Commutative Groups”, Groups, Languages, Algorithms, Contemp. Mathematics, 378, 2005, 319–348 | MR | Zbl

[4] Andrew J. Duncan, Ilia V. Kazatchkov, Vladimir N. Remeslennikov, “Centraliser Dimension and Universal Classes of Groups”, Proceedings of the LMS, submitted

[5] R. Brauer, K. A. Fowler, “On groups of even order”, Ann. Math., 62 (1955), 565–583 | DOI | MR | Zbl

[6] C. Bates, D. Bundy, S. Perkins, P. Rowley, “Commuting Involution Graphs for Symmetric Groups”, J. Algebra, 266 (2003), 133–153 | DOI | MR | Zbl