Minimax degrees of quasiplane graphs without $4$-faces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 435-439
Voir la notice de l'article provenant de la source Math-Net.Ru
The $M$-degree of an edge $xy$ in a graph is the maximum of the degrees of $x$ and $y$. The
minimax degree of a graph $G$ is the minimum over $M$-degrees of its edges. In order to get upper bounds on the game chromatic number, W. He et al showed that every planar graph $G$ without leaves and $4$-cycles has minimax degree at most $8$. This was improved by Borodin et al to the best possible
bound $7$. Answering a question by D. West, we show that every plane graph $G$ without leaves and $4$-faces has minimax degree at most $15$. The bound is sharp. Similar results are obtained for graphs embeddable on the projective plane, torus and Klein bottle.
@article{SEMR_2007_4_a24,
author = {O. V. Borodin and A. O. Ivanova and A. V. Kostochka and N. N. Sheikh},
title = {Minimax degrees of quasiplane graphs without $4$-faces},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {435--439},
publisher = {mathdoc},
volume = {4},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a24/}
}
TY - JOUR AU - O. V. Borodin AU - A. O. Ivanova AU - A. V. Kostochka AU - N. N. Sheikh TI - Minimax degrees of quasiplane graphs without $4$-faces JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2007 SP - 435 EP - 439 VL - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2007_4_a24/ LA - en ID - SEMR_2007_4_a24 ER -
%0 Journal Article %A O. V. Borodin %A A. O. Ivanova %A A. V. Kostochka %A N. N. Sheikh %T Minimax degrees of quasiplane graphs without $4$-faces %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2007 %P 435-439 %V 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2007_4_a24/ %G en %F SEMR_2007_4_a24
O. V. Borodin; A. O. Ivanova; A. V. Kostochka; N. N. Sheikh. Minimax degrees of quasiplane graphs without $4$-faces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 435-439. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a24/