Left-invariant almost complex structures and the associated metrics on four-dimensional direct products of Lie groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 304-344.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work the special classes of left-invariant almost complex structures on four-dimensional Lie groups which are a direct product of smaller dimension groups are researched. Alongside with known classes of almost complex structures that hold the set left-invariant metric or the symplectic form, two new classes of almost complex structures called reduced and anti-reduced are defined. These structures are determined only by the representation of pair even-dimentional distributions of tangent subspaces. For reduced almost complex structures the exterior $2$-forms invariant concerning these structures and the associated left-invariant metrics are under construction. For each type of four-dimensional direct products of Lie groups the problem on an integrability of all classes of almost complex structures considered in work is researched, and there is an aspect of integrable structures. For the associated metrics the scalar curvature, sectional curvature, a Ricci tensor are calculated, and their properties are investigated. In work the classification theorem for orthogonal almost complex structures on four-dimensional Lie groups is proved, and also the theorem about an integrability of reduced almost complex structure on a Lie group having a event-dimentonal center is proved. Also are deduced the formulas expressing Neenhase tensor, scalar and sectional curvatures, a curvature and Ricci tensor through structural constants of a Lie algebra of a Lie group. Except for that the problem on existence of left-invariant symplectic structures, left-invariant Kahler, locally conformally Kahler and Einstein metrics are investigated.
@article{SEMR_2007_4_a20,
     author = {E. S. Kornev},
     title = {Left-invariant almost complex structures and the associated metrics on four-dimensional direct products of {Lie} groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {304--344},
     publisher = {mathdoc},
     volume = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a20/}
}
TY  - JOUR
AU  - E. S. Kornev
TI  - Left-invariant almost complex structures and the associated metrics on four-dimensional direct products of Lie groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2007
SP  - 304
EP  - 344
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2007_4_a20/
LA  - ru
ID  - SEMR_2007_4_a20
ER  - 
%0 Journal Article
%A E. S. Kornev
%T Left-invariant almost complex structures and the associated metrics on four-dimensional direct products of Lie groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2007
%P 304-344
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2007_4_a20/
%G ru
%F SEMR_2007_4_a20
E. S. Kornev. Left-invariant almost complex structures and the associated metrics on four-dimensional direct products of Lie groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 304-344. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a20/

[1] N. Bourbaki, Éléments de mathématique. Fasc. XXVI. Groupes et algèbres de Lie. Chapitre I: Algèbres de Lie, Hermann, Paris, 1971 ; Éléments de mathématique. Fasc. XXXVII. Groupes et algèbres de Lie. Chapitre II: Algèbres de Lie libres. Chapitre III: Groupes de Lie, 1972 | MR

[2] Chu B.-Y., “Symplectic Homogeneous Spaces”, Trans. Amer. Math. Soc., 197 (1974), 145–159 | DOI | MR | Zbl

[3] Ishihara S., “Homogeneous Riemannian spaces of four dimensions”, J. Math. Soc. Japan, 7:4 (1955), 345–369 | DOI | MR

[4] Milnor J., “Curvatures of left invariant metrics on Lie groups”, Advances in Math., 21 (1976), 293–329 | DOI | MR | Zbl

[5] Dragomir S., Ornea L., Locally Conformal Kahler Geometry, Progress in Math., 155, Birkhauser, Basel, 1998 | MR | Zbl

[6] Barberis M. L., “Hypercomplex structures on four-dimensional Lie groups”, Proc. Amer. Math. Soc., 125:4 (1997), 1043–1054 | DOI | MR | Zbl

[7] Smolentsev N. K., “Prostranstva rimanovykh metrik”, Sovremennaya matematika i ee prilozheniya, 31, 2003, 69–146

[8] Smolentsev N. K., “Assotsiirovannye pochti kompleksnye struktury i (psevdo) rimanovy metriki na gruppakh $\mathrm{GL}(2,\mathbb R)$ i $\mathrm{SL}(2,\mathbb R)\times\mathbb R$”, Vestnik Kemerovskogo gosudarstvennogo universiteta, 2005, no. 4, 155–162

[9] Kornev E. S., “Privodimye pochti kompleksnye struktury na odnosvyaznykh gruppakh Li razmernosti 4”, Vestnik Kemerovskogo gosudarstvennogo universiteta, seriya “Matematika”, 2006, no. 1, 39–42

[10] P. Godushon, “Poverkhnosti Khopfa – Kvazikompleksnye mnogoobraziya razmernosti 4”, doklad VII, Chetyrekhmernaya rimanova geometriya: seminar Artura Besse 1978/79 g., Mir, Moskva, 1985, 120–138 | MR

[11] L. Berar-Berzheri, “Odnorodnye rimanovy prostranstva razmernosti 4”, doklad III, Chetyrekhmernaya rimanova geometriya: seminar Artura Besse 1978/79 g., Mir, Moskva, 1985, 45–59 | MR

[12] Mubarakzyanov G. M., “O razreshimykh algebrakh Li”, Izvestiya vysshikh uchebnykh zavedenii, Matematika, 1963, no. 1, 114–123 | Zbl

[13] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody i prilozheniya, v 2 t., Editorial URSS, Moskva, 1998 | MR

[14] Sh. Kobayasi, K. Namidzu, Osnovy differentsialnoi geometrii, v 2 t., Nauka, Moskva, 1981

[15] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, Moskva, 1964