Perfect colorings of the $12$-cube that attain the bound on correlation immunity
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 292-295
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct perfect $2$-colorings of the $12$-hypercube that attain our recent bound on the dimension of
arbitrary correlation immune functions. We prove that such colorings with parameters $(x,12-x,4+x,8-x)$ exist if $x=0,2,3$ and do not exist if $x=1$.
@article{SEMR_2007_4_a17,
author = {D. G. Fon-Der-Flaass},
title = {Perfect colorings of the $12$-cube that attain the bound on correlation immunity},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {292--295},
publisher = {mathdoc},
volume = {4},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a17/}
}
TY - JOUR AU - D. G. Fon-Der-Flaass TI - Perfect colorings of the $12$-cube that attain the bound on correlation immunity JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2007 SP - 292 EP - 295 VL - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2007_4_a17/ LA - ru ID - SEMR_2007_4_a17 ER -
D. G. Fon-Der-Flaass. Perfect colorings of the $12$-cube that attain the bound on correlation immunity. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 292-295. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a17/