Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2007_4_a17, author = {D. G. Fon-Der-Flaass}, title = {Perfect colorings of the $12$-cube that attain the bound on correlation immunity}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {292--295}, publisher = {mathdoc}, volume = {4}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a17/} }
TY - JOUR AU - D. G. Fon-Der-Flaass TI - Perfect colorings of the $12$-cube that attain the bound on correlation immunity JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2007 SP - 292 EP - 295 VL - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2007_4_a17/ LA - ru ID - SEMR_2007_4_a17 ER -
D. G. Fon-Der-Flaass. Perfect colorings of the $12$-cube that attain the bound on correlation immunity. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 292-295. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a17/
[1] D. Fon-Der-Flaass, “Perfect colorings of a hypercube”, Siberian Math. J. (to appear)
[2] D. G. Fon-Der-Flaass, “A bound on correlation immunity”, Siberian Electronic Mathematical Reports, 4 (2007), 133–135 | MR | Zbl
[3] C. Godsil, “Equitable partitions”, Combinatorics, Paul Erdős is Eighty, v. 1, Keszthely (Hungary), 1993, 173–192 | MR | Zbl
[4] Tarannikov Yu., On resilient Boolean functions with maximal possible nonlinearity, Report 2000/005, March 2000, 18 pp. ; Cryptology ePrint archive http://eprint.iacr.org | MR