Perfect colorings of the $12$-cube that attain the bound on correlation immunity
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 292-295
Cet article a éte moissonné depuis la source Math-Net.Ru
We construct perfect $2$-colorings of the $12$-hypercube that attain our recent bound on the dimension of arbitrary correlation immune functions. We prove that such colorings with parameters $(x,12-x,4+x,8-x)$ exist if $x=0,2,3$ and do not exist if $x=1$.
@article{SEMR_2007_4_a17,
author = {D. G. Fon-Der-Flaass},
title = {Perfect colorings of the $12$-cube that attain the bound on correlation immunity},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {292--295},
year = {2007},
volume = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a17/}
}
D. G. Fon-Der-Flaass. Perfect colorings of the $12$-cube that attain the bound on correlation immunity. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 292-295. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a17/
[1] D. Fon-Der-Flaass, “Perfect colorings of a hypercube”, Siberian Math. J. (to appear)
[2] D. G. Fon-Der-Flaass, “A bound on correlation immunity”, Siberian Electronic Mathematical Reports, 4 (2007), 133–135 | MR | Zbl
[3] C. Godsil, “Equitable partitions”, Combinatorics, Paul Erdős is Eighty, v. 1, Keszthely (Hungary), 1993, 173–192 | MR | Zbl
[4] Tarannikov Yu., On resilient Boolean functions with maximal possible nonlinearity, Report 2000/005, March 2000, 18 pp. ; Cryptology ePrint archive http://eprint.iacr.org | MR