Cayley's theorem for ordered groups: $o$-minimality
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 278-281
Voir la notice de l'article provenant de la source Math-Net.Ru
It has long been known [1] that any group could be represented in a strongly minimal theory by just writing down the relations of the group as unary functions. We show the same process works for ordered groups and yields an $o$-minimal group.
@article{SEMR_2007_4_a15,
author = {Bektur Baizhanov and John Baldwin and Viktor Verbiovskiy},
title = {Cayley's theorem for ordered groups: $o$-minimality},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {278--281},
publisher = {mathdoc},
volume = {4},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a15/}
}
TY - JOUR AU - Bektur Baizhanov AU - John Baldwin AU - Viktor Verbiovskiy TI - Cayley's theorem for ordered groups: $o$-minimality JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2007 SP - 278 EP - 281 VL - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2007_4_a15/ LA - en ID - SEMR_2007_4_a15 ER -
Bektur Baizhanov; John Baldwin; Viktor Verbiovskiy. Cayley's theorem for ordered groups: $o$-minimality. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 278-281. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a15/