Cayley's theorem for ordered groups: $o$-minimality
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 278-281

Voir la notice de l'article provenant de la source Math-Net.Ru

It has long been known [1] that any group could be represented in a strongly minimal theory by just writing down the relations of the group as unary functions. We show the same process works for ordered groups and yields an $o$-minimal group.
@article{SEMR_2007_4_a15,
     author = {Bektur Baizhanov and John Baldwin and Viktor Verbiovskiy},
     title = {Cayley's theorem for ordered groups: $o$-minimality},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {278--281},
     publisher = {mathdoc},
     volume = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a15/}
}
TY  - JOUR
AU  - Bektur Baizhanov
AU  - John Baldwin
AU  - Viktor Verbiovskiy
TI  - Cayley's theorem for ordered groups: $o$-minimality
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2007
SP  - 278
EP  - 281
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2007_4_a15/
LA  - en
ID  - SEMR_2007_4_a15
ER  - 
%0 Journal Article
%A Bektur Baizhanov
%A John Baldwin
%A Viktor Verbiovskiy
%T Cayley's theorem for ordered groups: $o$-minimality
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2007
%P 278-281
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2007_4_a15/
%G en
%F SEMR_2007_4_a15
Bektur Baizhanov; John Baldwin; Viktor Verbiovskiy. Cayley's theorem for ordered groups: $o$-minimality. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 278-281. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a15/