Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2007_4_a15, author = {Bektur Baizhanov and John Baldwin and Viktor Verbiovskiy}, title = {Cayley's theorem for ordered groups: $o$-minimality}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {278--281}, publisher = {mathdoc}, volume = {4}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a15/} }
TY - JOUR AU - Bektur Baizhanov AU - John Baldwin AU - Viktor Verbiovskiy TI - Cayley's theorem for ordered groups: $o$-minimality JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2007 SP - 278 EP - 281 VL - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2007_4_a15/ LA - en ID - SEMR_2007_4_a15 ER -
Bektur Baizhanov; John Baldwin; Viktor Verbiovskiy. Cayley's theorem for ordered groups: $o$-minimality. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 278-281. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a15/
[1] R. Urbanik, “A representation theorem for $v^*-$algebras”, Fundamenta Mathematica, 53 (1963), 291–317 | MR
[2] D. J. S. Robinson, A course in the theory of Groups, Springer-Verlag, New York, Heidelberg, Berlin, 1982 | MR
[3] B. Baizhanov, “Orthogonality of one-types in weakly $o$-minimal theories”, Algebra and Model Theory, v. 2, eds. Pinus A. G. and Ponomaryov K. N., Novosibirsk State Technical University, Novosibirsk, 1999, 3–28 | MR
[4] A. Pillay and Ch. Steinhorn, “Definable sets in ordered structures I”, Transactions of the American Mathematical Society, 295 (1986), 565–592 | DOI | MR | Zbl
[5] D. Marker and Ch. Steinhorn, “Definable types in $o$-minimal theories”, The Journal of Symbolic Logic, 59 (1994), 155–194 | DOI | MR