Asymptotics for nonlinear damped wave equations with large initial data
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 249-277

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the one dimensional nonlinear damped wave equation \begin{equation} \begin{cases} u_{tt}+u_{t}-u_{xx}=\lambda|u|^{\sigma}u,\in\mathbf{R},\quad t>0,\\ u(0,x)=u_0(x), x\in\mathbf{R},\\ u_t(0,x)=u_1(x), x\in\mathbf{R}, \end{cases} \tag{0.1} \end{equation} where $\sigma>0$, $\lambda\in\mathbf R$. Our aim is to prove the large time asymptotic formulas for solutions of the Cauchy problem (0.1) without any restriction on the size of the initial data.
@article{SEMR_2007_4_a14,
     author = {N. Hayashi and E. I. Kaikina and P. I. Naumkin},
     title = {Asymptotics for nonlinear damped wave equations with large initial data},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {249--277},
     publisher = {mathdoc},
     volume = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a14/}
}
TY  - JOUR
AU  - N. Hayashi
AU  - E. I. Kaikina
AU  - P. I. Naumkin
TI  - Asymptotics for nonlinear damped wave equations with large initial data
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2007
SP  - 249
EP  - 277
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2007_4_a14/
LA  - en
ID  - SEMR_2007_4_a14
ER  - 
%0 Journal Article
%A N. Hayashi
%A E. I. Kaikina
%A P. I. Naumkin
%T Asymptotics for nonlinear damped wave equations with large initial data
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2007
%P 249-277
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2007_4_a14/
%G en
%F SEMR_2007_4_a14
N. Hayashi; E. I. Kaikina; P. I. Naumkin. Asymptotics for nonlinear damped wave equations with large initial data. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 249-277. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a14/