Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2007_4_a1, author = {A. E. Frid}, title = {Canonical decomposition of catenation of factorial languages}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {12--19}, publisher = {mathdoc}, volume = {4}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a1/} }
A. E. Frid. Canonical decomposition of catenation of factorial languages. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 12-19. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a1/
[1] S. V. Avgustinovich, A. E. Frid, “A unique decomposition theorem for factorial languages”, Internat. J. Algebra Comput., 15 (2005), 149–160 | DOI | MR | Zbl
[2] S. V. Avgustinovich, A. E. Frid, “Canonical decomposition of a regular factorial language”, Computer Science – Theory and Applications, LNCS, 3967, eds. D. Grigoriev, J. Harrison, E. Hirsch, Springer, 2006, 18–22 | MR | Zbl
[3] J. Cassaigne, “Unavoidable patterns”: M. Lothaire, Algebraic Combinatorics on Words, Cambridge Univ. Press, 2002, 111–134 | MR
[4] V. Diekert, “Makanin's Algorithm”: M. Lothaire, Algebraic Combinatorics on Words, Cambridge Univ. Press, 2002, 387–442 | MR
[5] J. Karhumäki, M. Latteux, I. Petre, “Commutation with codes”, Theoret. Comput. Sci., 340 (2005), 322–333 | DOI | MR | Zbl
[6] M. Kunc, “The power of commuting with finite sets of words”, Theoretical Aspects of Computer Science (STACS'05), LNCS, 3404, Springer, 2005, 569–580 | MR | Zbl
[7] M. Kunc, “Simple language equations”, Bull. EATCS, 85 (2005), 81–102 | MR | Zbl
[8] A. Okhotin, “Decision problems for language equations with Boolean operations”, Automata, Languages and Programming, LNCS, 2719, Spriger, 2003, 239–251 | MR | Zbl
[9] A. Salomaa, S. Yu, “On the decomposition of finite languages”, Developments of Language Theory. Foundations, Applications, Perspectives, World Scientific, 2000, 22–31 | MR | Zbl