Groups of automatic automorphisms of some automatic structures
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 145-152

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the group $\operatorname{Aut}_a(\{0,1\}^\ast)$ of all automatic automorphisms of the regular set $\{0,1\}^\ast$ and the group $\operatorname{Aut}_a(\mathbb{Q})$ of all automatic automorphisms of the automatic model $\mathbb{Q}=(\{0,1\}^\ast,\preccurlyeq_{lex})$ have undecidable theories, which implies that they have no automatic presentations.
@article{SEMR_2006_3_a7,
     author = {N. S. Vinokurov},
     title = {Groups of automatic automorphisms of some automatic structures},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {145--152},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a7/}
}
TY  - JOUR
AU  - N. S. Vinokurov
TI  - Groups of automatic automorphisms of some automatic structures
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 145
EP  - 152
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a7/
LA  - ru
ID  - SEMR_2006_3_a7
ER  - 
%0 Journal Article
%A N. S. Vinokurov
%T Groups of automatic automorphisms of some automatic structures
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 145-152
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a7/
%G ru
%F SEMR_2006_3_a7
N. S. Vinokurov. Groups of automatic automorphisms of some automatic structures. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 145-152. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a7/