Groups of automatic automorphisms of some automatic structures
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 145-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the group $\operatorname{Aut}_a(\{0,1\}^\ast)$ of all automatic automorphisms of the regular set $\{0,1\}^\ast$ and the group $\operatorname{Aut}_a(\mathbb{Q})$ of all automatic automorphisms of the automatic model $\mathbb{Q}=(\{0,1\}^\ast,\preccurlyeq_{lex})$ have undecidable theories, which implies that they have no automatic presentations.
@article{SEMR_2006_3_a7,
     author = {N. S. Vinokurov},
     title = {Groups of automatic automorphisms of some automatic structures},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {145--152},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a7/}
}
TY  - JOUR
AU  - N. S. Vinokurov
TI  - Groups of automatic automorphisms of some automatic structures
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 145
EP  - 152
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a7/
LA  - ru
ID  - SEMR_2006_3_a7
ER  - 
%0 Journal Article
%A N. S. Vinokurov
%T Groups of automatic automorphisms of some automatic structures
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 145-152
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a7/
%G ru
%F SEMR_2006_3_a7
N. S. Vinokurov. Groups of automatic automorphisms of some automatic structures. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 145-152. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a7/

[1] N. S. Vinokurov, “Slozhnost nekotorykh estestvennykh problem v avtomatnykh strukturakh”, Sibirskii matematicheskii zhurnal, 46:1 (2005), 71–78 | MR | Zbl

[2] Yu. L. Ershov, “Nerazreshimost teorii simmetricheskikh i prostykh konechnykh grupp”, DAN SSSR, 158:4 (1964), 777–779 | Zbl

[3] Yu. L. Ershov, Problemy nerazreshimosti i konstruktivnye modeli, Nauka, M., 1980 | MR

[4] A. S. Morozov, “Perestanovki i neyavnaya opredelimost”, Algebra i logika, 27:1 (1988), 19–36 | MR

[5] Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR

[6] D. Kuske, “Is Cantor's theorem automatic?”, Proceedings of the 10th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR), 2850, 2003, 332–345 | Zbl

[7] A. S. Morozov, J. K. Truss, “On computable automorphism of the rational numbers”, The Journal of Symbolic Logic, 66:3 (2001), 1458–1469 | DOI | MR

[8] S. Rubin, Automata structures, PhD Thesis, University of Auckland, 2004 http://www.cs.auckland.ac.nz/~bmk/Sasha/SashaPhDthesis.pdf

[9] J. K. Truss, “On recovering structures from quotients of their automorphism groups”, Ordered groups and infinite permutations groups, Klüwer, 1996, 63–95 | MR | Zbl